

January 16, 2026

VIA IZIS

Anthony Hood, Chairperson
D.C. Zoning Commission
Office of Zoning
441 4th Street, NW, Suite 200-S
Washington, DC 20001

**Re: Z.C. Case No. 25-17: Living Classrooms Design Review Application
Post-Hearing Submission**

Dear Chairman Hood and Members of the Zoning Commission:

The Applicant has reviewed comments from the D.C. Homeland Security and Emergency Management Agency (“HSEMA”) and District Department of the Environment (“DOEE”) regarding the proposed Project and its related special exception to allow for education use within a 100-year floodplain.

As detailed in the Application, consistent with other waterfront sites within The Yards, the Applicant intends to elevate the Property out of the floodplain. As recommended by DOEE in its report, the Project will be elevated to the regulatory Design Flood Elevation, which elevates the site out of not only the 100-year but also the 500-year floodplain. This is the primary resiliency tool that is being employed to address the risks associated with climate change. The Applicant will comply with all other regulatory requirements under Chapter 31 of Title 20 of the D.C. Municipal Regulations (the “Flood Hazard Rules”) at the time of permitting, including the encroachment and elevation certificates described in the DOEE report.

Both HSEMA and DOEE requested that the Applicant prepare an evacuation plan. Attached as Exhibit A is a draft Flood Emergency Action Plan (“EAP”), which was prepared by the Applicant’s floodplain consultant (Wetland Studies and Solutions, Inc.). The EAP designates Site Emergency Coordinators, establishes metrics to trigger changes to operations, and identifies sources for flood hazard information, all as requested by DOEE. The EAP includes a plan for emergency evacuation routes prepared by the Applicant’s design team.

In addition to an evacuation plan, DOEE suggests that the Project may be subject to other additional requirements applicable to “Critical Facilities” under the Flood Hazard Rules, such as a resilient systems plan. The Applicant’s use is not an elementary school, secondary school or other use listed under the definition of “Critical Facilities” in Section 3199 of the Flood Hazard Rules, and so the additional requirements applicable to Critical Facilities in Section 3113 of the Flood Hazard Rules do not appear to apply to the Project. With that said, the Project’s equipment and systems will be located above the Design Flood Elevation and thus will be protected during a flood. The Applicant will work further with DOEE during permitting to ensure that all regulatory requirements are met.

Conclusion

Please feel free to contact me at (202) 721-1137 if you have any questions regarding the above. We look forward to the Commission's consideration of this application at its January 29, 2026 public meeting.

Sincerely,

/s/
David Avitable

Certificate of Service

The undersigned hereby certifies that copies of the foregoing document will be sent by electronic mail to the following addresses on January 16, 2026.

Shepard Beamon
Office of Planning
shepard.beamon@dc.gov

Erkin Ozberk
Preston Jutte
District Department of Transportation
erkin.ozberk1@dc.gov
preston.jutte@dc.gov

Advisory Neighborhood Commission 8F
8F@anc.dc.gov

Markita Bryant, ANC Single Member District 8F02
8F02@anc.dc.gov

/s/
David Avitabile

EXHIBIT A

FLOOD EMERGENCY ACTION PLAN (EAP)

**FOR
PARCEL P3
THE LIVING CLASSROOM
AT
xxx STREET, SW
WASHINGTON, DC**

OWNER:

The Living Classroom Foundation

PROPERTY MANAGER:

XXXXX MANAGEMENT COMPANY (TBD)

DATE:

January 15, 2026

**FLOOD EMERGENCY ACTION PLAN (EAP)
FOR
PARCEL P3 – THE LIVING CLASSROOM**

INTRODUCTION

This Flood Emergency Action Plan (“EAP”) for Parcel P3 - The Living Classroom identifies actions to be taken by specific personnel who monitor weather on a daily basis and are responsible for implementing emergency actions prior to, during and after a flooding event. Those personnel responsible for these specific preparedness and emergency tasks are referred to as “Site Emergency Coordinators” and the following are the actions for which they assume responsibility:

- monitoring flood warnings and flood predictions by the National Weather Service;
- implementing procedures for notifying staff, residents and temporary guests within the various uses of the building of an impending flood;
- initiating deployment of any manual floodproofing measures;
- initiating evacuation of the building;
- managing the return to normal operations after the threat of flood no longer exists; and
- implementing periodic flooding drills (can be coordinated with fire drills).

Parcel P3 – The Living Classroom is located on Parcel P3 in The Yards Park of Washington, D. C. at the confluence of two major river systems; the Potomac River and the Anacostia River. The potential for flooding at the site is real and is largely dependent upon the reaction and capacity of the Potomac River when its watershed experiences significant rainfall events. The Living Classroom site is in the 100-year and 500-year flood zones of these major rivers and, although designed with lowest floors elevated above the 500-year flood level, will need to actively monitor potential flooding conditions of these major river systems in case evacuation is necessary in anticipation of a larger flood event.

This EAP must always be kept current, as indicated by the date on the cover, with not only content but with the individuals identified and who have accepted responsibility as the “Site Emergency Coordinators” who will manage the tasks of monitoring the weather on a daily basis for the potential of a flood event and, when necessary, implementing emergency actions as outlined in this EAP to ensure the safety of staff, residents, temporary guests and the facility when a flood is expected.

Although this EAP documents personnel identified as the Site Emergency Coordinators responsible for implementing these EAP protocols, there are many other personnel required to meet the demands of effectively implementing flood protection at this site. This EAP expects that while the Site Emergency Coordinators have overall coordinating responsibilities, there will also be a Lead Facilities Point of Contact (POC) who will directly implement the orders of the Site Emergency Coordinator in terms of providing physical conditions of flooding, status of the building and evacuation of the building. The Lead Facilities POC will be directly responsible for having the staff and property management necessary for such implementation.

SITE EMERGENCY COORDINATOR - RESPONSIBLE PARTY

The Building Owner(s) are ultimately responsible for ensuring that there are always personnel identified as the Site Emergency Coordinators responsible for monitoring flooding conditions and implementing both warning and evacuation protocols. The Building Owner(s) must designate a primary and secondary Site Emergency Coordinator to act as the responsible party, who must be clearly identified with current contact information listed below so it is clear who is managing the Flood EAP for the facility. Delegation of this responsibility may be transferred to another responsible party. If at any point the Site Emergency Coordinators listed below are not able to perform the duties, a new responsible party shall be identified as the Site Emergency Coordinator(s) and listed below in this EAP. The following person(s), by their signatures applied below, hereby agree to act as the Site Emergency Coordinators for monitoring flooding conditions and implementing flood protection, flood warning and flood evacuation protocols as outlined in this EAP:

SITE EMERGENCY COORDINATOR - RESPONSIBLE PARTY **CONTACT INFORMATION:**

PRIMARY CONTACT:

SECONDARY CONTACT:

<u>NAME:</u> _____	<u>NAME:</u> _____
<u>TITLE:</u> _____	<u>TITLE:</u> _____
<u>PHONE:</u> _____	<u>PHONE:</u> _____
<u>SIGNATURE:</u> _____	<u>SIGNATURE:</u> _____
<u>DATE:</u> _____	<u>DATE:</u> _____

FACILITY'S ADDITIONAL POINT OF CONTACT – CONTACT INFORMATION:

PRIMARY CONTACT:

SECONDARY CONTACT:

<u>NAME:</u> _____	<u>NAME:</u> _____
<u>TITLE:</u> _____	<u>TITLE:</u> _____
<u>PHONE:</u> _____	<u>PHONE:</u> _____
<u>SIGNATURE:</u> _____	<u>SIGNATURE:</u> _____
<u>DATE:</u> _____	<u>DATE:</u> _____

This EAP is meant to be a living document to be edited as needed to remain current and informative for those responsible for implementing the EAP protocols for The Living Classroom site. The “Site Emergency Coordinator - Responsible Party” listed above must always be kept up to date to ensure flood safety protocols are maintained without interruption. Their signatures indicate that they have agreed to accept this responsibility. **This document must always be updated with the current Responsible Party at all times during the life of the building.** The date on the cover must be updated whenever any change is made to this EAP.

MONITORING FLOOD CONDITIONS

General Flood Broadcast Terminology

The National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) collects and interprets rainfall data from gages located throughout the Potomac and Anacostia River watersheds and then uses statistical methods to try and predict the results of expected storms. From those predictions, the NWS issues flood advisories, watches and flood warnings. A “Flood Watch”, “Flood Warning” and “Flash Flood Warning” are issued for flooding of minor drainage systems and streams throughout DC. However, a “Coastal Flood Advisory”, “Coastal Flood Watch” and “Coastal Flood Warning” are all relative to flooding along the Potomac and Anacostia Rivers. A “Coastal Flood Advisory” means that minor coastal flooding is happening or anticipated. A “Coastal Flood Watch” is issued when significant coastal flooding is possible. And a “Coastal Flood Warning” is issued when significant coastal flooding is happening or anticipated. The NWS advisories, watches and warnings should be used for general awareness of flooding. Therefore, the Site Emergency Coordinator shall use these advanced NWS warnings as a general tool for awareness of potential flooding conditions, but not as an indicator of when to implement emergency protocols.

Step 1: Monitor the Weather for Flood Events

The first step in monitoring flood conditions at this site is to regularly check the weather forecast for the week. The Site Emergency Coordinator shall check the 7 day weather forecast every morning to always be aware of developing weather conditions. A “Weather Log” should be maintained by the Site Emergency Coordinator to record every morning whether rain is forecasted within the next 3 days. This will provide the first indication of any potential significant rain event.

Step 2: Receive Emergency Broadcasts

In addition to checking the general weather forecast for the region every morning, the Site Emergency Coordinator shall prepare accordingly to receive and monitor the flood announcements from the NWS. These NWS emergency broadcasts can be heard from various local radio stations or on a NOAA Weather Radio station. NWS emergency broadcasts can be heard from the following local Baltimore-Washington Forecast Office radio stations:

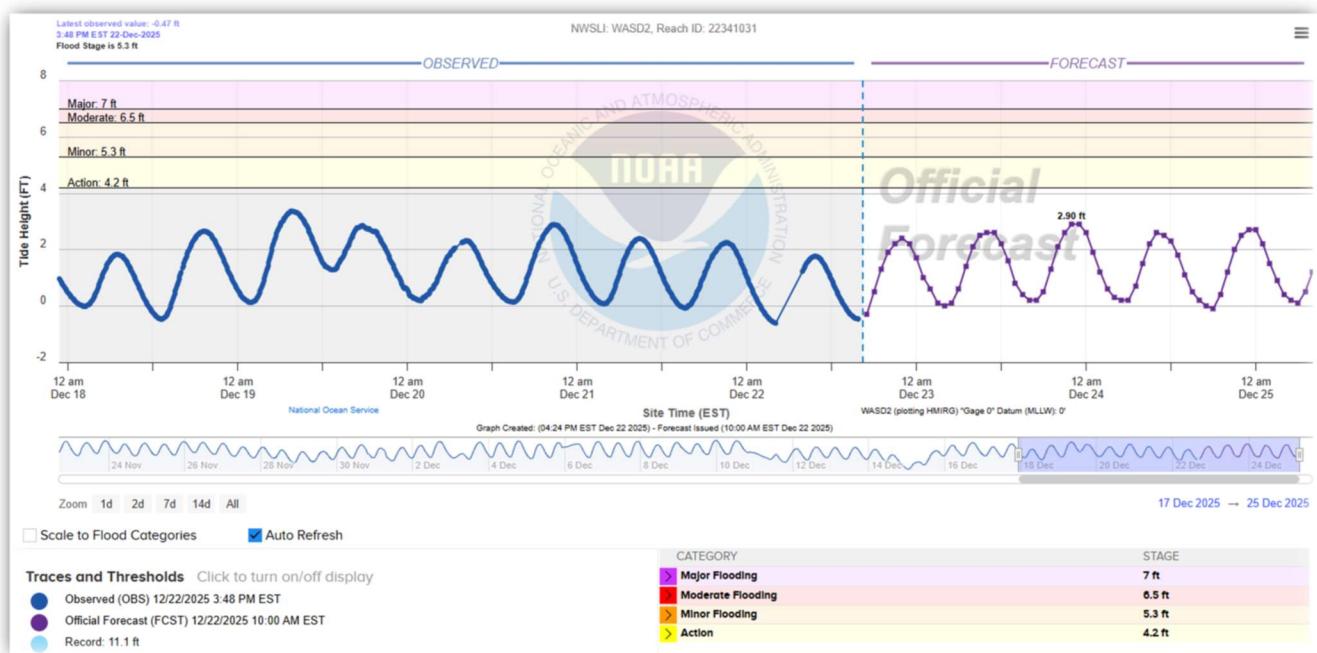
Washington DC -- WNG-736 on 162.450 MHz

Hagerstown (Clear Springs) MD -- WXM-42 on 162.475 MHz

Manassas (Independence Hill) VA -- KHB-36 on 162.55 MHz

Frostburg MD -- WXM-43 on 162.425 MHz

Charlottesville (Covesville) VA -- KZZ-28 on 162.450 MHz


Fredericksburg VA -- WZ-2527 on 162.425 MHz

NWS broadcasts for the Washington, DC area are also automatically broadcasted via text messages on mobile devices by all mobile carriers by signing up on “AlertDC”. The Site Emergency Coordinator shall sign up for “AlertDC” and obtain a specific NOAA weather broadcast radio or receiver, such as Midland NOAA Weather Monitor Model WR-100. The weather broadcast radio/receiver shall be maintained on the premises and dedicated only to receiving NOAA weather broadcasts that are recorded and repeated every few minutes when a warning is issued.

Step 3: Monitor Washington Channel/Potomac River Water Levels

After being made aware of any potential rain event in the following few days, the Site Emergency Coordinator will then monitor NWS forecasted predictions of the Washington Channel/Potomac River water levels over the following few days by accessing the NWS website posting specific gage data for the Washington Channel at:

<https://water.noaa.gov/gauges/wasd2>

This live chart shows the actual “Observed” fluctuation in river water level with the dark blue line that has already occurred and shows the anticipated “Forecast” river water level in purple. The NWS considers minor flooding in the region to begin occurring when the water level is between elevation 4.2 feet and 5.3 feet. Moderate flooding occurs when the level is above 5.3 feet. Major flooding begins when the water level exceeds elevation 7.0 feet.

For The Living Classroom, the site would begin to flood when the elevation at this gage exceeds elevation 12.0 feet. (Note that the elevations reported on the NWS site are measured from the Mean Lower Low Water or MLLW datum while elevation data used in site plans and construction of The Living Classroom are based on the DC Datum, which is 1.3 feet higher than MLLW. This means that the 100-year flood elevation of 10.7 relative to the DC Datum is equal to an elevation of 12.0 relative to MLLW. Thus, the 100-year flood elevation on the NWS tide height chart for the Washington Channel at SW Waterfront is elevation 12.0 MLLW. The 500-year (14.2 DC Datum) is reported as elevation 15.5 MLLW on this NWS website.

The following data sheet provides a summary of flood elevations and key building floor elevations relative to both the DC Datum and MLLW.

KEY ELEVATIONS DATA SHEET

Location	Elevation (from DCVD; DC Datum)*	Elevation (from MLLW - Used by NWS)**
Flood Plain Elevations:		
100 Year Flood Level	10.7'	12'
500 Year Flood Level	14.2'	15.5'
Historic Flood Levels – 3 Highest Levels at Haines Point Measuring Point		
10/17/1942	9.75'	11.05'
3/19/1936	9.25'	10.55'
9/19/2003 - Hurricane Isabel	8.99'	10.29'
Key Site Elevations (refer to Attachment B):		
Flood Protection Level	14.3'	15.6'
Elevation of First Floor Slab	14.3'	15.6'
Elevation of Back Deck along building	14.25'	15.55'
Elevation of Back Deck along terrace edge	14.11'	15.41
Waterfront Step 3 at southeast property corner	12.51'	13.81'
Waterfront Step 2 at southeast property corner	10.75	12.05'
Waterfront Step 1 at southeast property corner	9.0'	10.3'

*Design Elevations of Building are presented relative to DC Datum

**NWS website water/flood levels are presented relative to MLLW

Elevation for MLLW is equal to Elevation for DC Datum + 1.3'

As a backup to the NWS river data, if internet connection is unavailable, the facility is equipped with a weather station that reads rainfall accumulation. The total rainfall that occurs during each storm event is an indication of the amount of water that may drain to the Potomac River and potentially cause river levels to rise. Facility staff should become familiar with how storms of varying rainfall amounts equate to general river levels in the hours following the storm event. The amount of rain that falls (measured as depth in inches) over the watershed must be conveyed by the river. Generally, in the Potomac River watershed, rainfall totals of over 3.18 inches in a 1-hour period, or 6.74 inches in a 12-hour period, or 8.27 inches within a 24 hour period all result in water volumes producing 100-year flooding levels in the river. The following table depicts the relationship between rainfall amount, storm duration and frequency storm event:

PDS-based precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	0.355 (0.322-0.389)	0.425 (0.386-0.467)	0.505 (0.458-0.557)	0.564 (0.510-0.622)	0.639 (0.574-0.705)	0.695 (0.620-0.767)	0.750 (0.665-0.830)	0.802 (0.707-0.892)	0.870 (0.758-0.974)	0.922 (0.797-1.04)
10-min	0.566 (0.514-0.622)	0.679 (0.617-0.747)	0.809 (0.733-0.891)	0.902 (0.815-0.994)	1.02 (0.914-1.12)	1.11 (0.988-1.22)	1.19 (1.06-1.32)	1.27 (1.12-1.42)	1.38 (1.20-1.54)	1.45 (1.26-1.64)
15-min	0.708 (0.642-0.777)	0.854 (0.775-0.939)	1.02 (0.927-1.13)	1.14 (1.03-1.26)	1.29 (1.16-1.42)	1.40 (1.25-1.55)	1.50 (1.34-1.67)	1.60 (1.41-1.78)	1.73 (1.51-1.94)	1.82 (1.58-2.06)
30-min	0.970 (0.881-1.07)	1.18 (1.07-1.30)	1.45 (1.32-1.60)	1.65 (1.50-1.82)	1.91 (1.72-2.11)	2.11 (1.88-2.33)	2.31 (2.04-2.55)	2.50 (2.20-2.78)	2.76 (2.40-3.09)	2.95 (2.55-3.33)
60-min	1.21 (1.10-1.33)	1.48 (1.34-1.63)	1.86 (1.69-2.05)	2.15 (1.95-2.37)	2.55 (2.28-2.81)	2.86 (2.55-3.16)	3.18 (2.82-3.52)	3.50 (3.09-3.90)	3.95 (3.44-4.43)	4.31 (3.72-4.86)
2-hr	1.41 (1.28-1.55)	1.71 (1.56-1.88)	2.16 (1.97-2.38)	2.52 (2.28-2.77)	3.02 (2.71-3.32)	3.42 (3.06-3.77)	3.85 (3.41-4.25)	4.29 (3.78-4.76)	4.92 (4.27-5.49)	5.42 (4.67-6.10)
3-hr	1.50 (1.37-1.66)	1.83 (1.66-2.02)	2.32 (2.10-2.56)	2.71 (2.44-2.98)	3.26 (2.92-3.59)	3.72 (3.31-4.10)	4.20 (3.71-4.64)	4.72 (4.12-5.23)	5.45 (4.70-6.08)	6.06 (5.16-6.80)
6-hr	1.84 (1.68-2.04)	2.23 (2.02-2.46)	2.81 (2.55-3.11)	3.30 (2.97-3.64)	4.01 (3.58-4.43)	4.62 (4.08-5.10)	5.27 (4.62-5.84)	5.98 (5.18-6.66)	7.02 (5.98-7.89)	7.90 (6.63-8.93)
12-hr	2.22 (2.00-2.49)	2.68 (2.41-3.00)	3.40 (3.06-3.81)	4.03 (3.60-4.51)	4.98 (4.40-5.56)	5.81 (5.08-6.50)	6.74 (5.81-7.56)	7.77 (6.61-8.76)	9.34 (7.77-10.6)	10.7 (8.75-12.2)
24-hr	2.58 (2.35-2.87)	3.12 (2.84-3.48)	4.01 (3.64-4.46)	4.79 (4.33-5.32)	6.00 (5.37-6.61)	7.06 (6.28-7.75)	8.27 (7.29-9.04)	9.64 (8.41-10.5)	11.7 (10.1-12.8)	13.6 (11.5-14.7)
2-day	3.00 (2.73-3.32)	3.63 (3.30-4.02)	4.65 (4.23-5.15)	5.53 (5.01-6.11)	6.85 (6.17-7.55)	8.00 (7.16-8.80)	9.28 (8.24-10.2)	10.7 (9.41-11.8)	12.9 (11.1-14.1)	14.7 (12.6-16.2)

Note that all storms develop differently and so the amount of time between the issuance of any flood watch, warning or predicted flood levels and when the peak of a flood actually occurs at the Site varies. A review of the five most significant historical storms that occurred in this area reveal that the amount of time from beginning of a storm to the peak flooding elevation ranges from 6 hours to over 30 hours. Therefore, paying close attention to the predicted or forecasted NWS water levels are extremely important in protecting life and property at this location.

Given the variability of the reaction of flooding to storm events and the amount of warning time before the peak flooding occurs, the Site Emergency Coordinator will initiate the following protocol when a rain event is occurring and the following triggers of forecasted water levels from the Washington Channel gage are exceeded (all trigger elevations below are relative to MLLW as reported by the NWS):

Forecast Flood Level 1 – Elevation 7.0: A “Forecast” flood elevation of 7.0 or greater is predicted by the NWS at the Washington Channel gage indicates that a significant storm event is occurring and that the potential for flooding of low lying areas exists. Although this level of flooding would not affect The Living Classroom facility, it is to be used as a warning for the Site Emergency Coordinator to be on alert for a change in weather conditions that might result in a storm that exceeds the predicted flood level. Because this is only a prediction based on a collection of meteorological data, a change in weather conditions can cause a change in the predicted water level. Therefore, when the NWS forecasts a flood level of 7.0 feet at the Washington Channel, the Site Emergency Coordinator should be on alert and continually monitor the observed and predicted water levels for any change that would exceed Forecast Flood Level 1.

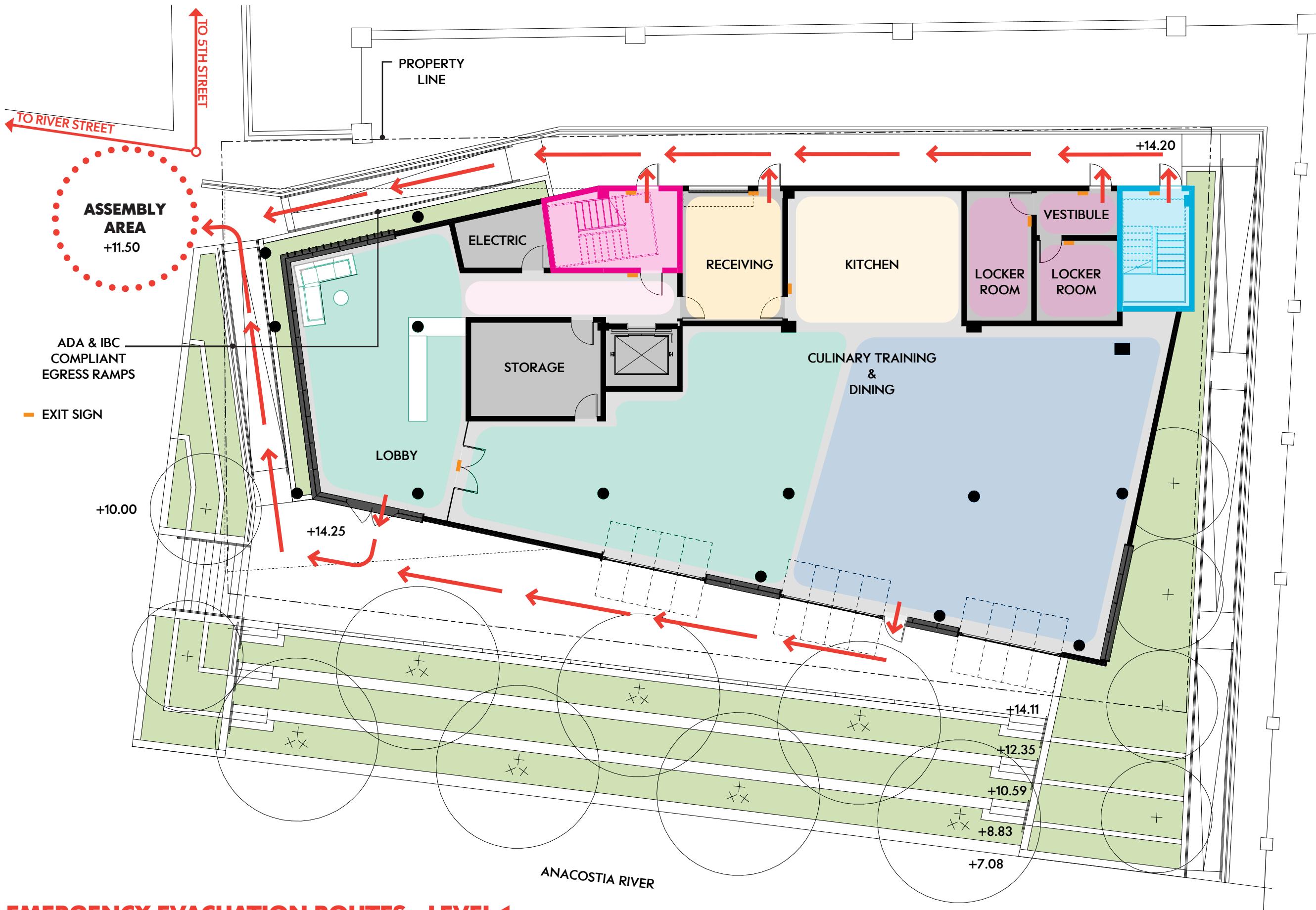
PROTOCOL 1: When it is anticipated that a Forecast Flood Level 1 will be exceeded, the Site Emergency Coordinator shall notify the Lead Facilities Point of Contact (POC) to alert all necessary staff of the potential of a significant flood event and ensure their availability to arrive at the facility ready to implement evacuation of occupants and safety protocols of the building if weather conditions worsen and exceed Level 2.

Forecast Flood Level 2 – Elevation 9.0: A “Forecast” flood elevation of 9.0 or greater is predicted by the NWS at the Washington Channel gage indicates that a significant storm event is occurring and that the potential for flooding of The Living Classroom site exists. When a Level 2 condition is predicted to be exceeded, the Site Emergency Coordinator should implement the following protocols:

PROTOCOL 1: Contact the Lead Facilities POC to inform them that a flood event is anticipated within the next 6-12 hours and direct them to initiate deployment of staff immediately to inspect the site, actual flood levels and safety of surrounding areas.

PROTOCOL 2: Inform all staff and occupants that a Coastal Flood Warning has been issued by the National Weather Service and that staff are actively monitoring weather and flooding conditions. Inform occupants that although evacuation is not mandatory at this time, occupants should prepare accordingly in case temporary evacuation is necessary, including removing any pets and vehicles from the premises.

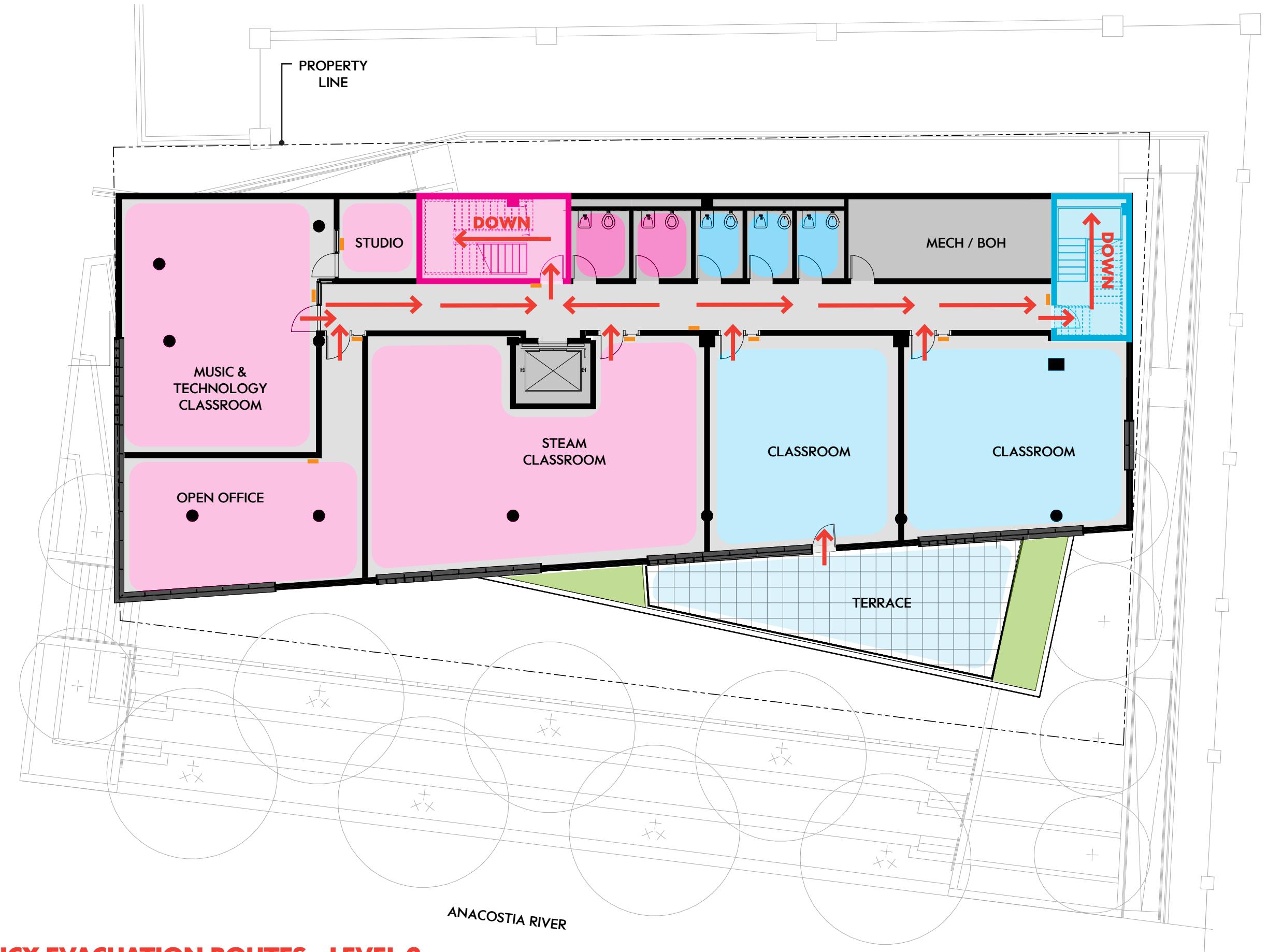
PROTOCOL 3: Continue to monitor weather, assist any volunteer evacuations by residents/guests and continue to monitor the building and surrounding infrastructure conditions for safety.


PROTOCOL 4: If the water level on the NWS Washington Channel gage is forecasted to rise above elevation 10, inform all occupants that evacuation of the premises is highly recommended until dangerous conditions have subsided and notice is provided that it is safe to return to the building.

PROTOCOL 5: Document, to the best of ability, which occupants and staff remain on the premises and chose to stay in the building. If emergency conditions occur, it will be necessary to assist emergency personnel in understanding how many occupants remain on the premises.

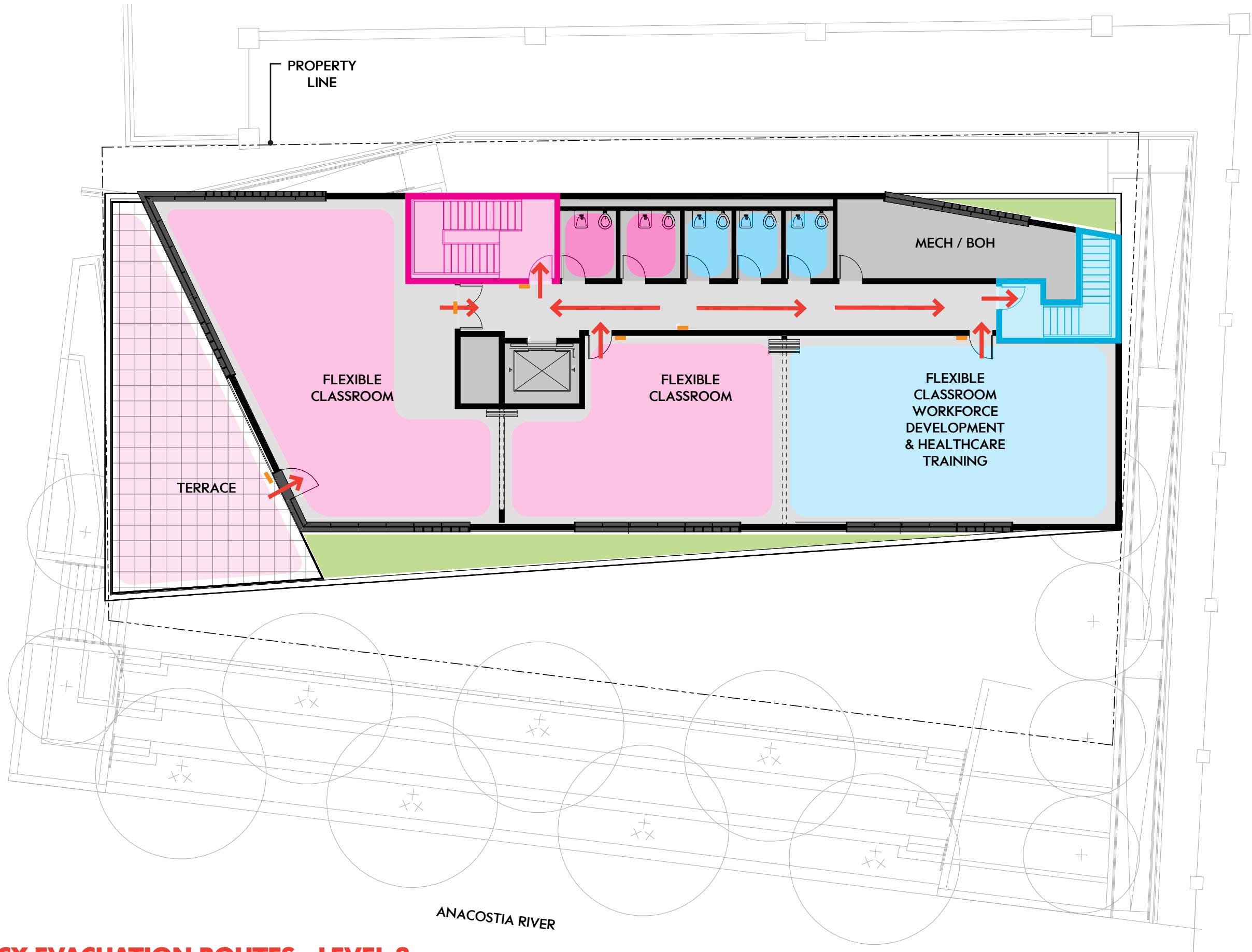
Forecast Flood Level 3 – Elevation 12.0: A “Forecast” flood elevation of 12.0 or greater is predicted by the NWS at the Washington Channel gage indicates that a significant storm event is occurring and that the potential for flooding of The Living Classroom site exists. When a Level 3 condition is predicted to be exceeded, the Site Emergency Coordinator should implement the following protocols:

- PROTOCOL 1: If the water level on the NWS Washington Channel gage is forecasted to rise above elevation 12, first inform the Lead Facility POC that evacuation of the occupants of the premises should be implemented due to potential flooding conditions.
- PROTOCOL 2: Inform all occupants that evacuation of the premises is mandatory until dangerous conditions have subsided and notice is provided that it is safe to return to the building. Occupants should evacuate to the Assembly Area using routes within the building as indicated by Emergency Evacuation Routes exhibits posted throughout the building.
- PROTOCOL 3: If the flood level rises to a level in which the land between the facility and the Potomac River is flooded, the Site Emergency Coordinator shall evacuate the premises to higher ground, but continue to monitor flood conditions at the site and be available to coordinate with emergency personnel regarding any assistance with those occupants, if any, who remain on the premises.
- PROTOCOL 4: Upon confirmation that both observed and forecasted flood levels are receding and actual flood levels around the site have receded to below elevation 10, the Site Emergency Coordinator shall return to the site to inspect conditions both inside and outside of the facility. Document any damage that requires maintenance.
- PROTOCOL 5: Once river levels have receded below elevation 7 for more than 6 continuous hours and forecasts on the Washington Channel gage no longer predict levels above elevation 7.0 feet in the following 3 days, contact the Lead Facilities POC and direct them to begin cleanup within or around the building.
- PROTOCOL 6: Determine when conditions are suitable for occupants to return safely. When conditions are safe, provide notification to evacuated occupants that they may return to the premises. If conditions are not safe, notify appropriate parties (Engineer, Lead Facilities POC or City Emergency Personnel) as needed to address any safety concerns before allowing reentry into the building.


ATTACHMENT A:
EMERGENCY EVACUATION ROUTE EXHIBITS

EMERGENCY EVACUATION ROUTES - LEVEL 1

PARCEL P3 - THE YARDS


January 2026

EMERGENCY EVACUATION ROUTES - LEVEL 2

PARCEL P3 - THE YARDS

January 2026

EMERGENCY EVACUATION ROUTES - LEVEL 3

PARCEL P3 - THE YARDS

January 2026

ATTACHMENT B:
SITE PLAN/ELEVATION EXHIBIT

classrooms

est. 1985

The logo for classrooms features the word 'classrooms' in a large, blue, lowercase, sans-serif font. The 'c' is stylized with a vertical line extending upwards. Below 'classrooms', the text 'est. 1985' is written in a smaller, blue, lowercase, sans-serif font. To the right of the main text, the word 'learning' is written in a blue, lowercase, sans-serif font, and below it, the words 'by doing' are written in a blue, lowercase, sans-serif font.

PARCEL P3, THE YARDS

PYRIGHT © 2023 by STUDIOS archite

M STREET, NW ~ WASHINGTON, DC 20036 ~ 202.736

20 BROADWAY, FLOOR 20 ~ NEW YORK, NY 10271 ~ 212

SCHEMATIC DESIGN 7/28/2024

CALE: 1/8"=1'-0"

SITE PLAN GRADING PLAN

L-200