A & A Structures LLC 22 Holly Leaf Ct. Bethesda MD 20817 Tell: 240-678-5399 aastructure@gmail.com

March 28, 2021

Ms. Dawn Lea 4459 MacArthur Blvd NW, Washington, DC 20007

Re: Existing roof structure check

Dear Ms. Lea,

Further to your request, I visited your property located at 4459 MacArthur Blvd NW, Washington, DC 20007. I checked the existing structure for applicable loads. Per my observation, the existing roof of the building is constructed with 2x6 @ 24" O.C. joists. The joists span approximately 14 ft between the supports.

Per my attached calculations, the joists can barely carry the existing applicable snow load. The future development on the neighboring property will certainly add more snowdrift load to the roof which will be beyond the roof structural capacity.

Therefore, the roof structure will not be able to carry the future increased snow load and must be reinforced and strengthened if any additional load will be added.

Thank you for providing us with the opportunity to be of service. Sincerely,

Yahya Aliabadi, PhD, PE A & A Structures LLC

tment

A & A Structures LLC - Structural Calculation Sheets

PROJECT: 4459 MacArthur Blvd NW, Washington, DC 20007 SUBJECT: Roof Joist check

This document contains information confidential and/or proprietary to A & A Structures LLC that is not to be used, disclosed or reproduced in any form by any person or entity other than A & A Structures LLC without company's prior written permission. All rights reserved.

A & A Structures LLC - Structural Calculation Sheets

PROJECT: 4459 MacArthur Blvd NW, Washington, DC 20007 SUBJECT: Roof Joist check

1 - Objective or Purpose

The following calculation is for Snow Load calculation and Roof Joist check on property located at 4459 MacArthur Blvd NW, Washington, DC 20007

2 - References

- 2-1 ASCE 7-10 Minimum design Load for Buildings and other structures.
- 2-2 IBC 2013, International Building Code
- 2-3 NDS 2009, National Design Specification for Wood construction
- 2-4 Field measurments

3 - Calculation basis

Sructural calculation is performed per Reference 2-1 to 2-4.

4 - Assumptions

There is no unverified assumption in this calculation. Any assumption made in the body of this calculation will be justified in the same section where assumption is made.

5 - Inputs

Snow Load	ASCE 7-10	(Ref. 2-1)
Building Geometry	Field Measurements	(Ref. 2-4)

6 - Methodology

Roof Structure is checked for applicable Dead , Live , Snow loads.

7 - Limitations or restrictions on calculation applicability

This calculation is only applicable for residential building located at 4459 MacArthur Blvd NW, Washington, DC 20007

Page 3 of 5

A & A Structures LLC - Structural Calculation Sheets

PROJECT: 4459 MacArthur Blvd NW, Washington, DC 20007 SUBJECT: Roof Joist check

now load :			
Caclulate Flat Roof Snow Load	:		
Ground Snow Load from for Di	strict of Columbia	region : $p_g \coloneqq 30$ g	psf (Fig. 7-1, Ref 2-1
Terrain category for oper scattered obstructions having 30 ft :	n terrain with heights less than	Exposure Cate	gory = C (26.7.2, Ref 2-:
Exposure factor for partially ex	posed roof :	$C_e := 1.0$	(Table 7-2, Ref 2-
Thermal factor for unheated st	ructures :	$C_t := 1.1$	(Table 7-3, Ref 2-2
Risk category of building : I	Risk_Cat≔"II"		(Table 1.5-1, Ref 2-
Snow Importance factor :	$I_s := if Risk_Cat$	= "I"	
	else if Risk_	_Cat = "II"	
	1.0 else if Bisk	Cat = "III"	
	else		
	1.2	$I_s = 1$	(Table 1.5-2, Ref. 2-
Flat roof snow load: $p_{flat} := ma$	$\mathbf{x} \left(20 \ \boldsymbol{psf} \cdot \mathbf{I}_{\mathrm{s}}, 0.7 \cdot 0 \right)$	$C_{e} \cdot C_{t} \cdot I_{s} \cdot p_{g} = 23.$	1 <i>psf</i> (Eq. 7.3-1, Ref. 2-
Minimum flat roof snow load :	$p_{\min} \coloneqq if p$	$_{ m g} \leq 20$ psf \mid = 20 p s	sf (7.3.4, Ref. 2-
		• p _g	
	else	• • • • • • • • • • • • • • • • • • •	
		$_{\rm s} \cdot (20 \mathbf{psf})$	
Flat roof snow load after mi	nimum		
snow load is considered:		$p_{f}\!\coloneqq\!\max\left(p_{\min},p_{f}\right)$	$_{\rm flat}) = 23.1 \ psf$
Roof slope factor :		$C_s := 1.0$	(Fig. 7-2b, Ref. 2-
Sloped roof :	$\mathbf{p}_{\mathrm{s}} \coloneqq \mathbf{C}_{\mathrm{s}} \boldsymbol{\cdot} \mathbf{p}_{\mathrm{f}} \!=\! 2$	3.1 psf	(Eq. 7.4-1, Ref. 2-
	(p _g		
Snow density : $\gamma_{\text{snow}} = min$	$\left 0.13 \cdot \frac{rg}{f_4} + 14 \cdot pc \right $	f , 30 pcf = 17.9	<i>pcf</i> (Eq. 7.7-1, Ref. 2-1

This document contains information confidential and/or proprietary to A & A Structures LLC that is not to be used, disclosed or reproduced in any form by any person or entity other than A & A Structures LLC without company's prior written permission. All rights reserved.

By: YA , Date: 03/28/2021

Page 4 of 5

A & A Structures LLC - Structural Calculation Sheets

PROJECT: 4459 MacArthur Blvd NW, Washington, DC 20007 SUBJECT: Roof Joist check

Height of balanced snow load (Snow c	lrift height): $h_b \coloneqq \frac{p_s}{\gamma_{snow}} = 1.291 \ ft$	(7.7.1, Ref. 2-1)
h_c h_d p_d	Surcharge Load Due to Drifting Balanced	Snow Load
h		
Figure 6 - Configuration	w of snow drift (Fig. 7-8, Ref.	2-1)
Calculate Snow Drifts near parapo	et:	
Parapet Height per architecture:	h _{pr} :=42 <i>in</i>	
Clear height : $h_c := h_{pr} - h_b = 2.2$	09 <i>ft</i>	
Calculate_drift := if $\frac{h_c}{h_b} < 0.2$		
"No Drift"		
else "Yes"	$Calculate_drift = "Yes"$	(7.7.1, Ref. 2-1)
Length of the roof upwind of the	el _u :=40 <i>ft</i>	
If less than 25ft use $lu=25$ ft l_u :	$=$ max $(l_u, 25 ft) = 40 ft$	
Ground Snow load: $$p_{\rm g}$$	=30 <i>psf</i>	
Height of snow drift : $h_d := \frac{3}{4} \left(0.43 \cdot \right)$	$\sqrt[3]{\frac{l_u}{ft}} \cdot \sqrt[4]{\frac{p_g}{psf}} + 10 - 1.5 ft = 1.649$	<i>ft</i> (Fig. 7-9, Ref. 2-1)
$\mathbf{w} \coloneqq \min\left(\inf_{\mathbf{h}_{d} \leq \mathbf{h}_{c}}, 8 \mathbf{h}_{c}\right) = 6.595 \ \boldsymbol{ft}$	$\mathbf{p}_{\mathrm{d}} \coloneqq \mathbf{i} \mathbf{f} \mathbf{h}_{\mathrm{d}} \leq \mathbf{h}_{\mathrm{c}}$	$=1.649 \ ft$
else	n _d else	
$\frac{\left 4 \cdot \frac{\mathbf{h_d}^2}{\mathbf{h_c}} \right }{\left \mathbf{h_c} \right }$		

A & A Structures LLC - Structural Calculation Sheets

PROJECT: 4459 MacArthur Blvd NW, Washington, DC 20007 SUBJECT: Roof Joist check

This document contains information confidential and/or proprietary to A & A Structures LLC that is not to be used, disclosed or reproduced in any form by any person or entity other than A & A Structures LLC without company's prior written permission. All rights reserved. Tel : 240-678-5399 Email : aastructure@gmail.com

Building Code Information

Project Title: Engineer: Project ID: Project Descr:

> File: Roof Check.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31

Governing Code City Jurisdiction	: IBC 2018, ASCE 7-16, CBC 20	19, AISC 360-16, NDS 2018, ACI 318-14	4, TM:
Contact Name Alternate Contact	:		
Building Official Address Phone	: :,, :	Fax :	eMail :
Notes	:		

Tel : 240-678-5399 Email : aastructure@gmail.com

Project Information

File: Roof Check.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31

Project Title Description	: Roof structure of exis :	ting building	
I.D. Address	: : 4459 MacArthur Blvd	NW, Washington, DC	20007
Project Leader Phone	: Y. Aliabadi : 240-678-5399	Fax :	eMail: aastructure@gmail.com
Project Note:	S		

Tel : 240-678-5399 Email : aastructure@gmail.com

Wood Beam

Project Title: Roof structure of existing building Engineer: Y. Aliabadi Project ID: Project Descr:

File: Roof Check.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31

DESCRIPTION:	Roof Joists check for Bending
	J

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

CODE REFERENCES

Load Combination Set : IBC 2018							
Material Properties							
Analysis Method : Allowable Stress Design	Fb +	1300 psi	E : Modulus of Elastic	ity			
Load Combination IBC 2018	Fb -	1300 psi	Ebend- xx	1700ksi			
	Fc - Prll	1700 psi	Eminbend - xx	620 ksi			
Wood Species · Hem-Fir (North)	Fc - Perp	405 psi					
Wood Grade · Select Structural	Fv .	145 psi					
	Ft	775 psi	Density	28.72 pcf			
Beam Bracing Beam is Fully Braced against lateral-torsional buckling							

D(0.014) S(0.054) D(0.014) S(0.054) $C.0 \times 6.0$ $C.0 \times 6.0$

Applied Loads			Service loads entered. Loa	Service loads entered. Load Factors will be applied for calculations.				
Load for Span Number 1 Uniform Load : $D = 0.0070$, $S = 0.0$ Load for Span Number 2 Uniform Load : $D = 0.0070$, $S = 0.0$	270 ksf, Trib 270 ksf, Trib	utary Width = 2.0 ft, (Sno utary Width = 2.0 ft, (Sno	ow Load) for the formula of the form	lo additiona	Il capacity t			
DESIGN SUMMARY					Design OK			
Maximum Bending Stress Ratio Section used for this span	= = =	0.999 1 2.0 X 6.0 1,493.87 psi 1,495.00 psi	Maximum Shear Stress Ratio Section used for this spar	= 1 =	0.404 : 1 2.0 X 6.0 67.36 psi 166.75 psi			
Location of maximum on span Span # where maximum occurs	= =	13.500ft Span # 1	Location of maximum on span Span # where maximum occurs	= =	13.047 ft Span # 1			
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	tion า	0.290 in Rat 0.000 in Rat 0.366 in Rat -0.001 in Rat	tio = $557 >= 240$ tio = $0 < 240$ tio = $442 >= 180$ tio = $177873 >= 180$					

Maximum Forces & Stresses for Load Combinations

Load Combination Max Stress Ratios						Mor	nent Values		Shear Values							
Segment Length	Span #	М	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	CL_	М	fb	F'b	V	fv	F'v
D Only													0.00	0.00	0.00	0.00
Length = 13.50 ft	1	0.263	0.106	0.90	1.000	1.00	1.00	1.00	1.00	1.00	0.31	307.56	1170.00	0.11	13.87	130.50
Length = 13.0 ft	2	0.263	0.106	0.90	1.000	1.00	1.00	1.00	1.00	1.00	0.31	307.56	1170.00	0.11	13.87	130.50
+D+S					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 13.50 ft	1	0.999	0.404	1.15	1.000	1.00	1.00	1.00	1.00	1.00	1.49	1,493.87	1495.00	0.54	67.36	166.75
Length = 13.0 ft	2	0.999	0.404	1.15	1.000	1.00	1.00	1.00	1.00	1.00	1.49	1,493.87	1495.00	0.53	67.36	166.75
+D+0.750S					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 13.50 ft	1	0.801	0.324	1.15	1.000	1.00	1.00	1.00	1.00	1.00	1.20	1,197.30	1495.00	0.43	53.99	166.75
Length = 13.0 ft	2	0.801	0.324	1.15	1.000	1.00	1.00	1.00	1.00	1.00	1.20	1,197.30	1495.00	0.42	53.99	166.75
+0.60D					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length = 13.50 ft	1	0.089	0.036	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.18	184.54	2080.00	0.07	8.32	232.00

_

_

+0.60D

S Only

File: Roof Check ec6																
Wood Beam Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31																
DESCRIPTION:	Roof Joi	sts chec	k for Be	nding												
Load Combination		Max Stres	s Ratios								Mon	nent Values			Shear Va	lues
Segment Length	Span #	Μ	V	Сd	C _{F/V}	Сi	Cr	Сm	C t	cL_	М	fb	F'b	V	fv	F'v
Length = 13.0 ft	2	0.089	0.036	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.18	184.54	2080.00	0.07	8.32	232.00
Overall Maximum Deflections																
Load Combination		S	Span	Max. "-'	' Defl	Locatio	on in Spar	I	Load Co	ombinatio	n		Max. "+"	Defl L	ocation in	Span
+D+S			1	0.3	3657		5.807						0.0	000	0.	000
+D+S			2	0.2	2810		7.626	+D+S					-0.0	009	0.	218
Vertical Reac	tions						Sup	port no	tation : I	ar left is	#1		Values in K	IPS		
Load Combination					Suppor	t1 Su	upport 2	Suppo	ort 3							
Overall MAXimum					0.3	348	1.127	0.	.327							
Overall MINimum					0.2	277	0.895	0.	.260							
D Only					0.0)72	0.232	0.	.067							
+D+S					0.3	348	1.127	0.	.327							
+D+0.750S					0.2	279	0.903	0.	.262							

0.139

0.895

0.040

0.260

0.043

0.277