

WELLS & ASSOCIATES, LLC

TRAFFIC, TRANSPORTATION and PARKING CONSULTANTS

ZONING COMMISSION
MEETING THE NEEDS OF A MOBILE SOCIETY ZONING COMMISSION
Distribut of Columbia

CASE NO. CASE NO.06-30

EXMISIT NO.74

EXHIBIT NO.

LINDA JOY AND KENNETH JAY POLLIN MEMORIAL COMMUNITY TRANSPORTATION IMPACT STUDY WASHINGTON, D C.

Prepared for
Pollin Memorial Community Development
And
District of Columbia Housing Authority

Prepared by Wells & Associates, LLC

June 16, 2006

LINDA JOY AND KENNETH JAY POLLIN MEMORIAL COMMUNITY TRANSPORTATION IMPACT STUDY WASHINGTON, D.C.

TABLE OF CONTENTS

	<u>Page</u>
Section I	
Introduction	t
Section 2	
Background Data	6
Overview	6
Study Scope	6
Public Road Network	6
Existing Traffic Counts	7
Public Transportation Facilities and Services	7
Curb Parking	8
Bicycle Facilities	8
Section 3	
Analysis	13
Overview	13
Existing Levels of Service	13
Background Traffic Growth	13
Pipeline Projects	13
Background Traffic Forecasts	16
Background Future Levels of Service	16
Site Trip Generation Analysis	16
Trip Distribution Analysis	18
Site Traffic Assignments	18
Total Future Traffic Forecasts	18
Total Future Levels of Service	18
Parking Requirements	19
Section 4	
Conclusions	25

LINDA JOY AND KENNETH JAY POLLIN MEMORIAL COMMUNITY TRANSPORTATION IMPACT STUDY WASHINGTON, D.C.

LIST OF FIGURES

<u>Figure</u>	<u>Title</u>	<u>Page</u>
1-1	Site Location	4
1-2	Site Plan	5
2-1	Intersection Lane Use and Traffic Control	9
2-2	Existing Vehicular Traffic Counts	10
2-3	Existing Pedestrian Traffic Counts	11
2-4	Existing Metro Bus and Rail Service	12
3-1	Pipeline Project Traffic Forecasts	20
3-2	Background Future Peak Hour Traffic Forecasts	21
3-3	Site-Generated Traffic Directional Distribution	22
3-4	Site-Generated Traffic Assignments	23
3-5	Total Future Peak Hour Traffic Forecasts	24

LIST OF TABLES

<u>Table</u>	<u>Title</u>	<u>Page</u>
3-I	Intersection Levels of Service	14
3-2	Parkside Planned Unit Development Trip Generation Analysis	15
3-2	Site Trip Generation Analysis	17

LINDA JOY AND KENNETH JAY POLLIN MEMORIAL COMMUNITY TRANSPORTATION IMPACT STUDY WASHINGTON, D.C.

LIST OF APPENDICES

Α	Existing Vehicular Traffic Counts
В	Existing Pedestrian Traffic Counts
С	Existing Levels of Service
D	Background Future Levels of Service
E	Total Future Levels of Service

Section I INTRODUCTION

This report presents the results of a traffic impact analysis of the Linda Joy & Kenneth Jay Pollin Memorial Community residential project within Parkside in Ward 7 in the northeast section of Washington, D C, as shown on Figure 1-1

Parkside is located east of Kenilworth Aquatic Gardens, west of Kenilworth Avenue, and south of Mayfair The subject site consists of 459,939 square feet of land area in Square 5040, Parcel 170/27 and a portion of Parcel 170/28, in the northeast section of Washington, D.C. Lot 804 in Square 5040 is zoned R-5-A and is bounded by Anacosita Avenue, Hayes Street, Barnes Street and Grant Street. Parcel 170/27 and 170/28, which are triangular in shape and not now included in a zone district, are collectively bounded by Hayes Street, Anacostia Avenue and Kenilworth Park.

Pollin Memorial Community Development and the District of Columbia Housing Authority propose a Planned Unit Development consisting of 125 residential units and 125 off-street parking spaces. The 42 rental apartment units that currently occupy the site would be replaced and the remaining 83 units would be owner occupied townhomes.

The subject site is served by a connected network of local streets, including Anacostia Avenue, Barnes Street, Grant Place, and Hayes Street. Parkside is connected to Route 295 (Kenilworth Avenue), a limited access highway The closest interchanges are located to the north at Nannie Helen Burroughs Avenue and to the south at Benning Road

For purposes of this traffic analysis, this development was assumed to be completely built and occupied three years hence, by 2009

Tasks undertaken in this study included the following

- Review the proposed development plans and other background data
- A field reconnaissance of existing roadway and intersection geometrics, traffic controls, traffic signal phasing/timings, and speed limits
- 3 Counts of existing vehicular and pedestrian traffic at four (4) key intersections
- 4 Analysis of existing levels of service at these intersections
- 5 Background future traffic volumes were forecasted for project buildout.

- Background levels of service were calculated at key intersections based on background traffic forecasts, existing traffic controls, and existing intersection geometrics
- The number of AM and PM peak hour trips that would be generated by the proposed project were estimated based on (1) Institute of Transportation Engineers (ITE) trip generation rates, (2) the proximity of the project to the nearest Metro station, and (3) experience with other comparable projects in Washington, D C
- 8 Total future traffic volumes were forecasted for 2009
- Total future levels of service were calculated at key intersections based on total future traffic forecasts, existing traffic controls, and existing intersection geometrics
- 10 The adequacy of the proposed number of parking spaces were evaluated

Sources of data for this analysis included traffic counts conducted by Wells & Associates, ITE, the Washington Metropolitan Area Transit Authority (WMATA), the District of Columbia Office of Planning, the District Department of Transportation (DDOT), <u>Parkside Mixed-Use Development Traffic Impact Study</u>, Gorove Slade, August 8, 2005, and the development team

The conclusions of this traffic impact study are as follows:

- I Turning movements at the four intersections in the study area currently operate at level of service (LOS) "C" or better during both the AM and PM peak hours.
- 2. The Linda Joy & Kenneth Jay Pollin Memorial Community residential project will add 24 new AM peak hour trips and 28 new PM peak hour trips, to the public street system upon project completion
- 3. The net additional trips that would be generated by the proposed residential project will not have an adverse impact on traffic conditions in the study area. On average, motorists on Hayes Street at the Kenilworth Avenue access road would realize 4.9 seconds of additional delay.
- The connected sidewalk system in the immediate site vicinity and the proximity to the Minnesota Avenue Metrorail Station provide a transit opportunity for residents other than the automobile
- 5. The 125off-street parking spaces would adequately accommodate the Linda Joy & Kenneth Jay Pollin Memorial Community residential project.

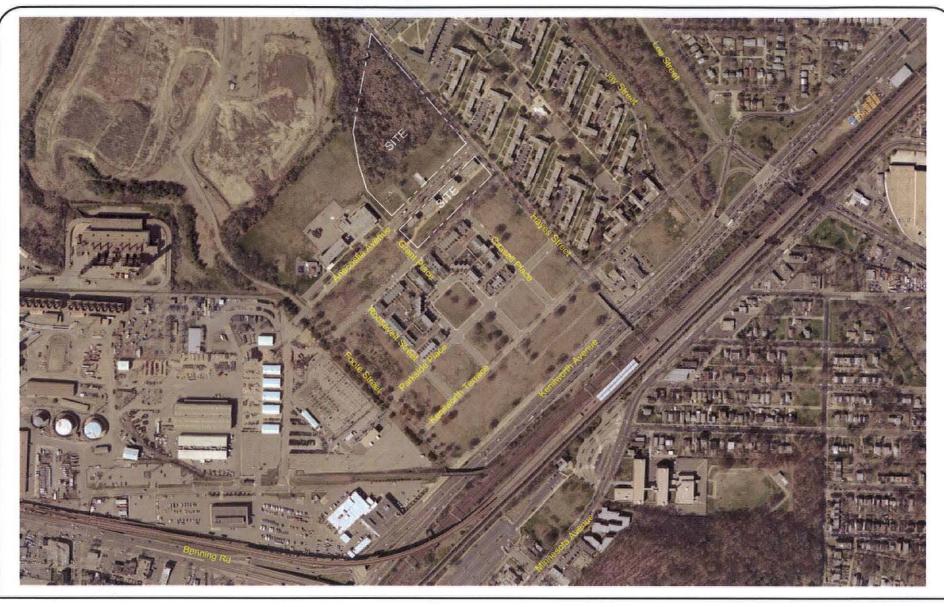


Figure 1—1 Site Location

Figure 1-2 Site Plan

Section 2 BACKGROUND DATA

Overview

This section presents the general study scope and background data regarding the public road network, existing vehicular and pedestrian traffic counts, public transportation facilities and services, curb parking, and bicycle facilities

Study Scope

This traffic study includes the following intersections

- I Kenilworth Avenue/Foote Street.
- 2 Anacostia Avenue/Hayes Street
- 3 Kenilworth Terrace/Hayes Street
- 4 Kenilworth Avenue/Hayes Street

Also two future intersections along Hayes Street and on intersection along Anacostia Avenue were included

Level of service (LOS) "D" is considered the minimum acceptable level of service in urban areas such as Washington, D C

Public Road Network

Overview. The subject site is served by a connected network of local streets and a freeway Existing intersection lane use and traffic control at key intersections in the site vicinity are shown on Figure 2-1

In the site vicinity, Kenilworth Avenue is classified by DDOT as a freeway. Anacostia Avenue, Foote Street, Hayes Street, and Kenilworth Terrace are classified as local streets.

Kenilworth Avenue (Route 295) is a north-south, limited access, freeway connecting the Baltimore Washington Parkway in Maryland to Interstate 295 in Washington, D.C. Access to Kenilworth Avenue, the immediate site vicinity is provided via southbound access road. The closest interchanges are located to the north at Nannie Helen Burroughs Avenue and to the south at Benning Road.

Anacostia Avenue in the site vicinity is a 30-foot road that connects Hayes Street through Parkside to Benning Road On-street parking is permitted on both sides of Anacostia Avenue Sidewalks are located on either side of Anacostia Avenue in the site vicinity

Foote Street is a two-way, local street that connects Anacostia Avenue to the Kenilworth Avenue access road Sidewalks are located on the both side of Foote Street

Hayes Street is a 62 -foot wide local street that operates one-way westbound between Kenilworth Terrace and Mayfair Terrace Between Kenilworth Avenue and Kenilworth Terrace, Hayes Street operates two-way Sidewalks are located on both sides of Hayes Street

Kenilworth Terrace is a north-south, two-way, local street connecting Jay Street to the north to Foote Street Sidewalks are located on either side of Kenilworth Terrace

Existing Traffic Counts

Vehicular Traffic Counts. Existing AM and PM peak period vehicular traffic counts were conducted on Thursday, March 30, 2006, by Wells & Associates at the following intersections

- I Kenilworth Avenue/Foote Street.
- 2 Anacostia Avenue/Hayes Street.
- 3 Kenilworth Terrace/Hayes Street.
- 4 Kenilworth Avenue/Hayes Street.

The results are included in Appendix A and summarized on Figure 2-2

Figure 2-2 indicates that Anacostia Avenue, through the site, carried 71 trips during the AM peak hour, and 34 trips during the PM peak hour. Hayes Street, just north of Kenilworth Terrace carried 287 trips during the AM peak hour, and 245 trips during the PM peak hour.

Pedestrian Traffic Counts. Existing AM and PM peak period pedestrian traffic counts also were conducted on Thursday, March 30, 2006, by Wells & Associates at the intersections listed above. The results are included in Appendix B and summarized on Figure 2-3

Public Transportation Facilities and Services

The subject site is served by numerous Metrobus lines and the Minnesota Avenue Metro station, as shown on Figure 2-4. The Minnesota Avenue Metro station is located approximately 1,500 feet from the proposed project, across Kenilworth Avenue. The Metro station is connected to the residential community by an existing pedestrian bridge at Hayes Street. Another pedestrian bridge is planned to cross Kenilworth Avenue at Grant Street.

Metrobus Line U6 is routed on Kenilworth Terrace and Hayes Street, adjacent to Parkside Metrobus Lines U2, U4, U5, U6, U8, V7, V8, and X3 serve the Minnesota Avenue Metro station

Curb Parking

Parking is permitted on both sides of both sides of Anacostia Avenue and Hayes Street in the through and along the site frontage. On-street curb parking is planned to remain along both Anacostia Avenue and Hayes Street with the proposed Linda Joy & Kenneth Jay Pollin Memorial Community residential project. As noted above, each dwelling unit would also have off-street parking

Bicycle Facilities

Currently, there are no bicycle facilities in the immediate site vicinity. A multi-use trail is proposed along Foote Street and Kenilworth Terrace

Figure 2-1 Intersection Lane Use and Traffic Control

← Represents One Travel Lane Signalized Intersection

- Stop Sign

Figure 2-2 Existing Vehicular Traffic Counts

Figure 2-3 Existing Pedestrian Traffic Counts

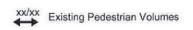


Figure 2—4 Existing Metro Bus & Rail Service

Section 3 ANALYSIS

Overview

This section presents analyses of existing and future traffic conditions, without and with the proposed Linda Joy & Kenneth Jay Pollin Memorial Community residential project, and evaluations of the parking requirements

Existing Levels of Service

Existing peak hour levels of service were estimated at the four key intersections in the study area based on the existing lane usage and traffic control shown on Figure 2-1, existing vehicular traffic counts shown on Figure 2-2, existing pedestrian traffic counts shown on Figure 2-3, and the Synchro intersection capacity analysis model. The results are presented in Appendix C and summarized in Table 3-1

Table 3-1 indicates that the turning movements at the four, unsignalized, study intersections currently operate at level of service (LOS) "C" or better during both the AM and PM peak hours

Background Traffic Growth

A 0.5 percent per year background traffic growth rate was used to account for general regional traffic growth and other projects that may be built within the next three years in the District of Columbia outside of the study area. This rate was compounded for three years for project buildout (2009). This growth rate was applied to all movements at each study area intersection.

Pipeline Projects

Vehicular trips associated with the Parkside PUD was included in this traffic study. Traffic data for the Parkside PUD was obtained from the <u>Parkside Mixed-Use Development Traffic Impact Study</u>, Gorove Slade, August 8, 2005

The Parkside PUD would include 1,865 residential units, 586,520 S F of office, and 37,000 S F of retail. As shown in Table 3-2, the Parkside project is anticipated to generate 797 AM peak hour trips (522 in, 275 out) and 871 PM peak hour trips (307 in, 564 out).

The traffic assignments for the Parkside PUD were obtain from the traffic study and are shown on Figure 3-1

Table 3-1 Linda Joy and Kenneth jay Pollin Memorial Community Intersection Level of Service (1 2 3)

Int	ersection	Control	Approach	Exis AM	iting PM	<u>Backr</u> AM	round PM	<u>Total</u> AM	Future PM
1	Kenilworth Avenue & Foote Street	Unsignalized	EBR	B [10 4]	A [8.8)	B [11 2]	A [100]	B [11 3]	B [100]
2.	Anacostia Avenue & Hayes Street	Unsignalized	WBTL NBL	A [8 3] A [7 6]	A [8.8] A [7.8]	A [8 3] A [7 7]	A [88] A [78]	A [8 3] A [7 7]	A [90] A [78]
3	Kenilworth Terrace & Hayes Street	Unsignalized	NBLTR SBLTR WBLTR	A [8 1] A [8 8] A [8 6]	A [8.3] A [8.2] A [8.5]	NA NA NA	NA NA NA	NA NA NA	NA NA NA
	IMPROVEMENT Parkside Mixed Use Development Proposes Hayes Street to be 2 way from Parkside Place to Kenilworth Terrace	Unsignalized	EBLTR WBLTR NBLTR SBLTR	NA NA NA	NA NA NA	A [8 9] A [9 6] A [9 1] B [11 8]	A [8 8] A [9 8] A [9 9] B [10 2]	A [8 9] A [9 7] A [9 3] B [11 9]	A [8 9] B [10 0] B [10 0] B [10 4]
4	Kenilworth Avenue & Hayes Street	Unsignalized	EBR	C [15 7]	B [114]	E [45 0]	C [164]	E [49 9]	C [16.8]
5	Anacostia Avenue & Site Access	Unsignatized	EBLR	NA	NA	NA	NA	A [8 7]	A [8 5]
6	Site Access & Hayes Street	Unsignalized	WBLT NBL	NA NA	NA NA	NA NA	NA NA	A [8 5] A [7 2]	A [0 3] B [10 1]
,	Site Access & Hayes Street	Unsignatized	NBLT	NA	NA	NA	NA	A [9 2]	A [0 1]

Notes:

Based on as Synchro version 6

² Numbers in brackets, [], represent control delay in seconds per vehicle for unsignalized intersections,

³ Numbers in parenthesis, (), represent control delay in seconds per vehicle for signalized intersections.

Table 3 2 Linda joy and Kenneth Jay Pollin Memorial Community Pipeline Project Trip Generation (1)

Background		Land Use			AM	Peak Hou	r	PM Peak Hour				
Development	Land Use	Code	Size	Units	ln	Out	Total	ln	Out	Total		
Parkside Mixed	Use Development											
	Residential				68	203	271	184	119	303		
	Office				442	61	503	80	392	472		
	Retail				12	Ħ	23	43	53	96		
	Total Backgrou	ınd Developmer	ıt		522	275	797	307	564	871		

Notes

⁽I) Trip Generation taken from Parkside Mixed-Use Development, Traffic Impact Study: Prepared by Gorove Slade, August 8 2005

Background Traffic Forecasts

Future peak hour traffic forecasts, without the Linda Joy & Kenneth Jay Pollin Memorial Community residential project, were estimated based on existing traffic counts, background traffic growth, and traffic assignments associated with the Parkside PUD, as shown on Figure 3-2

Background Future Levels of Service

Future peak hour levels of service, without the Linda Joy & Kenneth Jay Pollin Memorial Community residential project, were estimated at the four key intersections in the study area for the year of project buildout (2009) based on the intersection lane usage and traffic control shown on Figure 2-1, the background traffic forecasts shown on Figure 3-2, and the Synchro intersection capacity analysis model

The results are presented in Appendix D, and are summarized in Table 3-1 Table 3-1 indicates that the turning movements at the Kenilworth Avenue/Foote Street, Anacostia Avenue/Hayes Street, and Kenilworth Terrace/Hayes Street intersections would operate at LOS "A" or "B" during the AM and PM peak hours

The eastbound right turn movement on Hayes Street at the Kenilworth Avenue access road would operate at LOS "E" during the AM peak hour and LOS "C" during the PM peak hour

Site Trip Generation Analysis

The number of trips that will be generated by the proposed Linda Joy & Kenneth Jay Pollin Memorial Community residential project were estimated based on (1) Institute of Transportation Engineers (ITE) trip generation rates, (2) the proximity of the project to the Minnesota Avenue Metro station, and (3) experience with other comparable projects in Washington, D C

The number of vehicle trips generated by the proposed project were reduced to account for the proximity to the Minnesota Avenue Metro station, based on U.S. Census 2000 Data and the Development-Related Ridership Survey II, Washington Metropolitan Area Transit Authority, December 1989. The proposed project is approximately 1,500 feet from Metro station, with access provided via an existing bridge over Kenilworth Avenue and in the future via a new pedestrian bridge. It is assumed that 40.52 percent of the residents will use either Metrorail, Metrobus or another form of transportation other than a single occupancy vehicle.

Table 3-3 Linda Joy and Kenneth Jay Pollin Memorial Community Site-Trip Generation Analysis

			Land Use		M Peak Hour		Pi	/ Peak Hour	
Land Use	Size	Units	Code	in .	Out	Total	In	Out	Total
Existing Conditions									
Apartments	42	υa	220	5	19	24	27	14	41
Existing ITE Person Trips (2)									
Apartments	42	DU	220	6	21	26	30	15	45
Existing ITE Vehicle Trips (3)									
Apartments	42	DU	220	3	10	13	15	7	22
Proposed ITE Vehicle Trips (1)				_					
Townhomes	83	DU	230	7	37	44	35	17	52
Apartments	42	DŲ	220	5	19	24	27	14	41
ITE Person Trips (2)									
Townhomes	83	DU	230	8	41	48	39	19	57
Apartments	42	DU	220	6	21	26	30	15	45
ITE Vehicle Trips (3)									
Townhomes	83	DU	230	4	20	24	19	9	28
Apartments	42	DU	220 _	3	10	13	<u>15</u>	7	22
	Propose	ed Develop	ment Subtotal	7	30	37	34	16	50
	Difference (Pro	posed mi	nus Existing)	4	20	24	19	9	28

Notes

(1) Based on Trip Generation 7th Edition Institute of Transportation Engineers

(2) Assumptions

Non-auto mode split 0%
Average vehicle occupancy 1 10
(persons per vehicle)

(3) Assumptions

Residential 40 52%

Non-auto mode split Average vehicle occupancy 40 52% 1 20

(persons per vehicle)

Non-auto mode splits were adapted from the U.S. Census 2000 Data Summary File 3 and the Development Related Ridership Survey II Washington Metropolitian Area Transit Authority. December 1989

It is estimated that the proposed 125 dwelling units would generate 37 AM peak hour trips, and 50 PM peak hour trips, as shown in Table 3-3 The 42 existing residential apartments generate 13 AM peak hour trips and 22 PM peak hour trips, based on ITE rates. The proposed Linda Joy & Kenneth Jay Pollin Memorial Community, thus, would generate 24 net additional trips during the AM peak hour and 28 net additional trips during the PM peak hour, or one (1) vehicle every 2.5 minutes during the AM peak hour and one (1) vehicle every 2.15 minutes during the PM peak hour.

Trip Distribution Analysis

The distribution of peak hour trips that would be generated by the proposed Linda Joy & Kenneth Jay Pollin Memorial Community residential project was determined based on existing traffic counts and are consistent with other traffic studies conducted in the area. The estimated directions of approach are shown on Figure 3-3

As shown on Figure 3-3, 25 percent of the trips would approach the site from the north on Kenilworth Avenue, 50 percent would approach the site from the south on Kenilworth Avenue and 25 percent would approach the site from the west on Benning Road

Site Traffic Assignments

The site-generated traffic volumes were assigned to the public road network according to the directional distribution described above. The resulting site traffic assignments are shown on Figure 3-4

Total Future Traffic Forecasts

These site traffic assignments were added to the future background traffic volumes shown on Figure 3-2 to yield the total future traffic forecasts shown on Figure 3-5

Total Future Levels of Service

Future peak hour levels of service with Linda Joy & Kenneth Jay Pollin Memorial Community residential project were estimated at the key intersections in the study area based on the lane usage and traffic controls shown on Figure 2-1, the total future traffic forecasts shown on Figure 3-5, and the Synchro intersection capacity analysis model. The results are presented in Appendix E and summarized in Table 3-1

Table 3-I indicates that the turning movements at the unsignalized, study intersections would continue to operate at levels of service consistent with background levels during both the AM and PM peak hours. The eastbound right turn movements from Hayes Street onto the Kenilworth Avenue access road would continue to operate at or near capacity during the AM peak hour. The trips associated with the Linda Joy & Kenneth Jay Pollin Memorial Community residential project would add 4.9 seconds of delay per vehicle to the eastbound right turn movement during the AM peak hour and only 0.4 seconds during the PM peak hour. Based on the intersection levels of service and the minimal increase in delay, the project will not have an adverse impact on the surrounding road network.

Parking Requirements

The parking requirement for residential units, both apartments and one-family dwellings, within the R-5-A zone is one (I) space for each dwelling unit, according to Chapter 2I of the District of Columbia Municipal Regulations The proposed Linda Joy & Kenneth Jay Pollin Memorial Community residential project, therefore, would require 125 parking spaces

The proposed residential project would be served by 125 off-street parking spaces, one space for each dwelling unit. Further, some of the dwelling units will have tandem off-street parking spaces and on-street parking is proposed to remain along Anacostia Avenue and Hayes Street and is proposed along the dwelling side of the 20-foot streets within the project. These on-street spaces will provide an opportunity for guests of the residents to park within the site and not spill onto other neighborhood streets. The proposed parking supply more than adequately accommodates the parking requirements for the proposed residential project.

Figure 3—1 Pipeline Project Traffic Forecasts

Figure 3—2 Background Future Peak Hour Traffic Forecasts

Figure 3-3 Site-Generated Traffic Directional Distribution

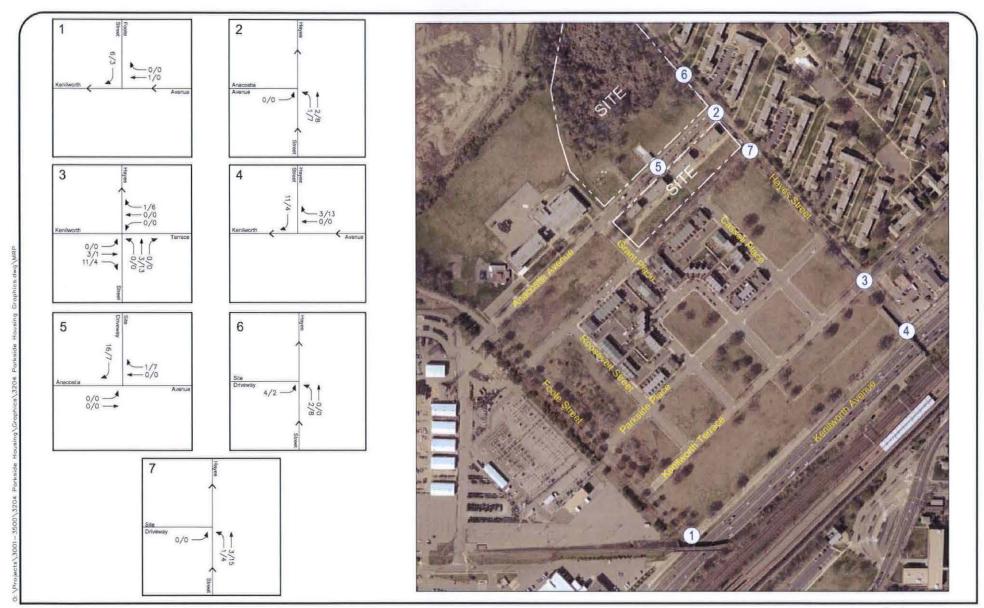


Figure 3-4 Site-Generated Traffic Assignments

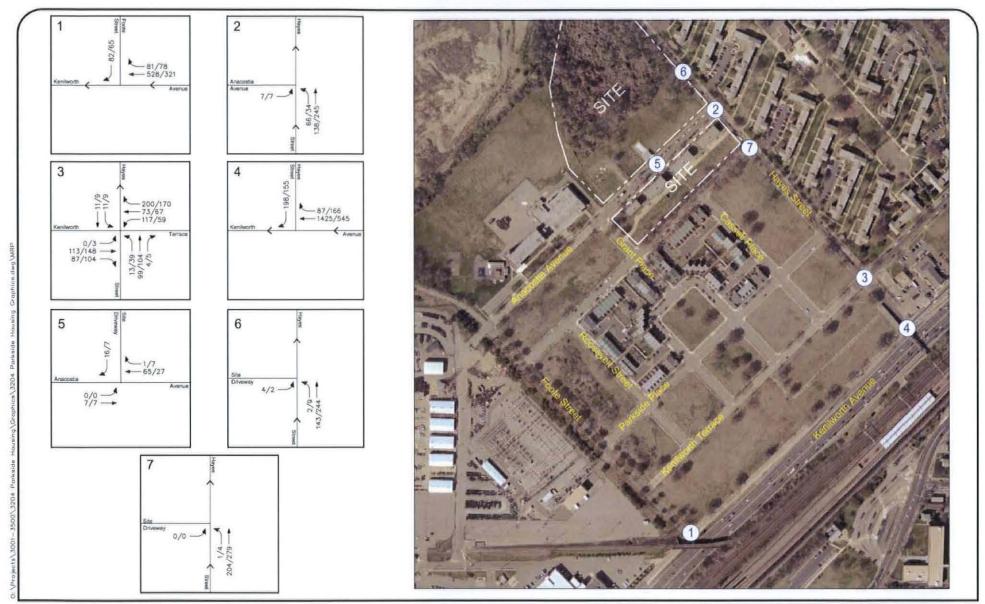


Figure 3-5 Total Future Peak Hour Traffic Forecasts

Section 4 CONCLUSIONS

The conclusions of this traffic impact study are as follows

- Turning movements at the four intersections in the study area currently operate at level of service (LOS) "C" or better during both the AM and PM peak hours
- The Linda Joy & Kenneth Jay Pollin Memorial Community residential project will add 24 new AM peak hour trips and 28 new PM peak hour trips, to the public street system upon project completion
- The net additional trips that would be generated by the proposed residential project would have no significant impact on the intersections in the study area. On average, motorists on Hayes Street at the Kenilworth Avenue access road would realize 4.9 seconds of additional delay.
- The net additional trips that would be generated by the proposed residential project will not have an adverse impact on traffic conditions in the study area. On average, motorists on Hayes Street at the Kenilworth Avenue access road would realize 49 seconds of additional delay.
- The 125off-street parking spaces would adequately accommodate the Linda Joy & Kenneth Jay Pollin Memorial Community residential project

Linda Joy & Kenneth Jay Pollin Memorial Community Transportation Impact Study Washington, D C

Appendix A

Existing Vehicular Traffic Counts

Wells & Associates, LLC

McLean, Virginia

Existing Traffic Count

PROJECT W & A JOB NO

Parkside Housing

DATE DAY

4 00 5 00

3-30/2006 Thursday

SOUTHROUND ROAD NORTHBOUND ROAD WESTBOUND ROAD

Kenilworth Terrace NE Kenilworth Terrace NE Haves Street NE

0 77 4 00-5 00

Wells & Associates, LLC McLean Virginia

Existing Traffic Count

PROJECT Parkside Housing
W & A JOB NO 3204
INTERSECTION Anacostia Ave & Hayes St

DATE DAY WEATHER 3/30/2006 Thursday Clear

SOUTHBOUND ROAD NORTHBOUND ROAD WESTBOUND ROAD

Anacostie Avenue NE Høyes Street NE

LOCATION			gton DC	& Haye				COUNT	ED BY	Clear Al & Ge agan	भारां		EASTB		ROAD		Hayes	Street N			
1							Tummg	Movem			bound			East	oound						}
Time		South 0			<u>+</u>		bound Street Ni	E	Ana		Avenue	NE	Hayes Street NE North						Total	PHF	Time
Penod	1 Right	2 Thru	3 Left	Total	4 Right	5 Thru	6 Left	Total	7 Right	8 Thru	9 Left	Total	10 Right	11 Thru	12 Left	Total	& South	& West			Period
AM 7 00-7 15	0	0	0	0	0	21	7	28	0	0	1	1	2	0	0	2	1	30	31		7 00-7 15
7 15-7 30	0	0	0	0	0	19	8 3	27	0	0	0	0	0	0		0			27		7 15-7 30
7 30-7 45 7 45-8 00	0	0	0	0		28 32	3 13	31 45	0	0		0		0		1	0	32 46			7 30-7 45 7 45-8 00
8 00-8 15	ő	ŏ	o	Ö	0	43	19	62	ŏ	0	5	5	1	0	0	1	5	63	68		8 00-8 15
8 15-8 30	0	0	o	0	0	28	20 12	48 43	0	0		1 1	0	0		0		48 43			8 15-8 30 8 30-8 45
8 30-8 45 8 45-9 00	0	0	0	0	0	31 16	12	28	0	0			0	0		0		28	30		8 45-9 00
9 00 9 15	0	0	0	ŏ	0	25	5	30	0	0	o	2 0	0	0		0	0		30		9 00 9 15
9 15-9 30	0	0	0	0	0	27	3 6	30	0	0	0	0	0	0	0	0	0	30 22	30 22		9 15 9 30 9 30 9 45
9 30-9 45 9 45-10 00	0	0	0	0	0	16 27	3	22 30	0	0	0	0	0	ő	ō	ő	ő	30	30		9 45 10 0
3 Hour					0	313	111	424	0	0	10	10	5	0	0	5	10	429	439		
Totals 1 Hour	0	0	0	- 0		313	111	424	,		10	10	3			- 3	.0	748			
Totals	إ	_	اً ا	اءِ	اءا	400		404	_	_		ار	ا	0	0	4	1	135	136	0.74	7 00-8 00
700-800 715815	0	0	0	0 0	0	100 122	31 43	131 165	0	0	1 5	1 5	4	0		3				0 64	7 15-8 15
7 30 8 30	ŏ	Ŏ	ŏ	Ö	0	131	55	186	0	0	6	6 7	3	0		3	6			0 72	7 30-8 30
7 45 8 45	0	0	0	0	0	134	64 63	198 181	0	0	9	7 9	2	0		2	7 9			0 76 0 70	7 45-8 45 8 00 9 00
8 00 9 00 8 15 9 15	0	0	0	0		118 100	49	149	ŏ	o	4	4		Ö		Ö		149			8 15 9 15
8 30 9 30	0	0	0	Ó	0	99	32	131	0	0	3	3	0	0		0			134		8 30 9 30
8 45-9 45	0	0	0	0		84 95	26 17	110 112	0	0		2 0	0	0		0 0					8 45 9 45 9 00 10 0
9 00 10 00	0		·	U			"	112										,,,,			3 00 10 00
AM Peak 7 45-8 45	a	0	o	0	0	134	64	198	٥	0	7	7	_2	0	G	2	7	200	207	0 76	AM Peak 7 45-8 45
PM						FA		E6		0	0	0	0	0	0	0	0	56	56		4 00-4 15
4 00-4 15 4 15-4 30	0	0	0	0	0	50 29	6 5	56 34	0	0		0		o		1	ŏ				4 15-4 30
4 30-4 45	0]	0	0	0	0	42	6	48	0	0	0	0	1	0		1		49			4 30-4 45
4 45-5 00	٥	0	0	0	0	56 49	0	56 50	0	0		1 3	0	0		0		56 50			4 45-5 00 5 00 5 15
5 00-5 15 5 15-5 30	0	0	0	o	Ö	53	9	62	Ö	o	4			0	0	ō	4	62	66		5 15-5 30
5 30-5 45	0	0	a	0	0	43	12	55	0	0	2	4 2 3 0	0	0		0	2	55	57		5 30 5 45
5 45-6 00 6 00-6 15	0	0	0	0	0	59 58	12 7 8 7	66 66	0	0		3	0	0		0	3 0		69 66		5 45-6 00 6 00-6 15
6 15-6 30	ő	ŏ	ő	ŏ	ő	57	7	64	ō	Ö	4	4	0	0	0	0	4	64	68		6 15-6 30
6 30-6 45	0	0	0	0	0	55	6		0	0	2	2 1	0	0		0			63 70		6 30-6 45 6 45-7 00
6 45-7:00	0	0	0	0	0	63	6	69	0	O 	ן י	''	0	"	º 	·	'	09	, ,,,		43-7 00
3 Hour Totals	Ō	0	0	0	0	614	73	687	0	0	20	20	_2	0	0	2	20	689	709		<u> </u>
1 Hour																					
Totals 4-00-5 00	٥	0	o	0	0	177	17	194	0			1	2	0		2	1	196			4 00 5 00
4 15-5 15	0	0	0			176	12	188				4	2	0		2	4 8				4 15 5 15 4 30 5 30
4 30-5 30 4 45-5 45	0	0	0	0	0	200 201	16 22	216 223	0	0		8 10		0	ا ا	0					4 45-5 45
5 00-6 00	0	Ö	o		0	204	29	233	0	0	12	12	0	0	0	0	12	233	245	0 89	5 00-6 00
5 15-6 15	0	0	0	0	0	213	36	249	0	0	9	9	0	0		0			258 260		5 15-6 15 5 30-6 30
5 30-6 30 5 45-6 45	0	0	0	0	0	217 229	34 28	251 257	0	0		9	0	0		0			266		5 45-6 45
6 00 7 00	ő	ō	ŏ	ŏ	_ [233	27	260	ō	ō		7	ō	0		0					6 00 7 00
PM Peak	0	0	0	٥		233	27	260	0	0	7	7	0	0	0	0	7	260	267	0.05	PM Peak 6 00 7 00

Wells & Associates, LLC McLean, Virginia

Existing Traffic Count

PROJECT Parkside Housing
W & A JOB NO 3204
INTERSECTION Kenilworth Ave & Foote St
LOCATION Washington DC

DATE 3/30/2006 DAY Thursday
WEATHER Clear
COUNTED BY Milton & Daryl SOUTHBOUND ROAD NORTHBOUND ROAD WESTBOUND ROAD EASTBOUND ROAD

Kenilworth Avenue NE Kenilworth Avenue NE Foote Street NE Foote Street NE

LOCATION		Washin	gton D(С				COUNT			& Daryl		EASTB	OUND	ROAD		Foote *	Street N	E		
		D4L	اممانيا					Movem			bound		1	Foet	ound						
Time		South Iworth	Avenue	NE	4		treet NE		Ker	ilworth 8		NE	Foote Street NE				North &	East &	Total	PHF	Time Period
Period	1 Right	2 Thru	3 Left	Total	Right	Thru	Left	Total	Right	Thru	Left	Total	Right	Thru	Left	Total	South	West			l Leuron
AM													12	0	0	12	97	12	109		7 00 7 1
7 00-7 15	12	85	0		0	0	0	0		0		0		0		17	148				7 15-7 3
7 15-7 30	26	122	0			0	0			ő		0		Ö		11	126		137		7 30 7
7 30-7 45	10	116	0		0	0	0	0		ő				Ö		14					7 45-8
7 45-8 00	8	114	0		0	0	0	0	0		0	0				26	122 76				8 00-8
3 00-8 15	4	72	0		0	0	0	0		0	0	0				19	82				8 15-8
3 15-8 30	6	76	0		0	0	0	0		0	0	0		1		12	77				8 30-8
8 30 8 45	4	73	0		0	0	0	0		0		0		٥		7	80		87		8 45-9
8 45-9 00	2	78	0		0	0	0	0		0		0		ő		4	38		42		9 00-9
9 00 9 15	3	35	0		0	0	0	0		0		0	1	1		15					9 15 9
9 15 9 30	4	68	0			0	0	0				0		0		7	42		49		9 30 9
9 30 9 45	2	40	0		0	0	0	0		0	0	0		٥		3	24		27		9 45 10
9 45-10 00	0	24	0	24	0	0	이	0	U	U	, u		3	"	"	J	24		2		9 45 10
3 Hour Totals	81	903	0	984	0	0	0	0	0	0	0	0	147		0	147	984	147	1 131		
1 Hour		555					Ť	·			_	_									
Totals														1			l				
7 00 8 00	56	437	0	493	o	0	o	0	0	o	٥	o	54	о	0	54	493	54	547	0 83	7 00-8 (
7 15-8 15	48	424	Ö		o	O	ام	ō		Ö						68			540	0 82	7 15-8
7 30-8 30	28	378	ŏ		ŏ	ō	Ď	ŏ		ŏ		Ō				70					7 30-8
7 45-8 45	22	335	ŏ		Ö	ō	ō	Ŏ		ō		ō		0	0	71	357	71	428	0 79	7 45-8
8 00-9 00	16	299	ő		ŏ	ō	ő	ŏ		ŏ		ő		•		64	315		379	0 93	8 00 9
8 15-9 15	15	262	Ö		ŏ	ŏ	ŏ	ŏ		ŏ		ŏ		Ιõ		42	277	42			8 15-9
8 30-9 30	13	254	0		ŏ	Ö	ŏ	ő		ŏ		ŏ				38	267	38	305		8 30 9
8 45-9 45	11	221	0		ŏ	ő	ŏ	o		o'		ŏ		ŏ		33	232				8 45 9 4
9 00-10 00	9	167	ŏ		ő	Ō	ŏ	Ŏ		Ó	0	0		0	0	29	176	29	205	0 59	9 00 10
AM Peak	!																				AM Pea
7 00-8 00 PM	56	437	0	493		0	0	0	0	0	0	0	54	0	0	54	493	54	547	0 83	7 00-8 (
4 00-4 15	3	28	0	31	0	0	o	0	o	0	Ιo	o	27	o	0	27	31	27	58		4 00-4
4 15-4 30	2	22	ő		ō	ŏ	ő	ő		ō		ō		l o		9			33		4 15-4
4 30-4 45	2	28	ő		ŏ	ŏ	ŏ	ō	ō	0		ō				6			36		4 30-4
4 45 5 00	3	21	ō		ŏ	ŏ	ŏ	ă	l õ	o		ō				2	24		26		4 45 5 1
5 00 5 15	4	18	ő		ŏ	Ö	ŏ	ā		ō		ō				6					5 00 5
	1	7	ő		ŏ	Ö	Ď	Ö		ŏ		ō							10		5 15-5
5 15 5 30 5 30 5 45	Ö	13	Ö		o	ŏ	0	o	_	ŏ		ŏ				2 6	13				5 30 5
5 45-6 00	1	16	0		ő	Ö	ŏ	ŏ		ő		ŏ		lŏ		1	17		18		5 45-6
6 00-6 15	3	8	0		ő	ő	ŏ	ŏ		ō	0	ō		l .	4	3	11		14		6 00-6
6 15-6 30	3	25			ő	Õ	ŏ	ŏ		ő	ă	ŏ				6	29		35		6 15-6
	7	52			o	ō	ŏ	ŏ		o	٥	ō			0	3					6 30-6
6 30-6 45 6 45-7 00	i	10	o		ŏ	Ŏ,	ŏ	ŏ	ŏ	ŏ	o,	ŏ	_	Ŏ	Ö	4	11		15		6 45-7 (
3 Hour																					
Totals	25	248	0	273	0	0	0	0	0	0	٥	0	75	0	0	75	273	75	348		<u> </u>
1 Hour				1										I			1				1
Totals											1						f	1			l
4 00-5 00	10	99	0	109	0	0	o	0	0	0	о	0	44	0	0	44	109		153		4 00 5
4 15-5 15	11	89				0	0	0	0	0	о	0		0							4 15-5
4 30-5 30	iol	74	ő			ō		ō	lo	0								16	100	0 69	4 30 5
4 45-5 45	8	59	Ö		0	0	0	0	f _	0	0	0	16	0	0	16	67	16	83		4 45-5
5 00-6 00	6	54	Ö		ŏ	ŏ	o	ō				0			0	15	60	15	75		5 00-6
5 15-6 15	5	44	Ö		ŏ	ō	ŏ	ŏ		0						12					5 15-6
5 30 6 30	8	62	Ö		ŏ	ŏ	ă	ō		ō		ō				16				0.61	5 30-6
5 45-6 45	9		0			Ö															5 45-6
6 00 7 00	9					ő		ő	ŏ	ŏ		ő									6 00 7
PM Peak															_				455		PM Pe
4 00 5 00	10	99	0	109	0	0	0	0	0	0	0	0	44	0	0	44	109	44	153	0 66	4 00

Wells & Associates, LLC McLean, Virginia

Existing Traffic Count

PROJECT Parkside Housing
W & A JOB NO 3204
INTERSECTION Kenilworth Ave & Hayes St

DATE 3/30/2006 DAY WEATHER Thursday Clear

SOUTHBOUND ROAD NORTHBOUND ROAD WESTBOUND ROAD

Konilworth Avenue NE Konilworth Avenue NE Hayes Street NE

Ţ								Movem		agan											\
Time	Ken	Southi		NF		Westl layes S	oound				bound Avenue	NE	Eastbound Hayes Street NE				North	East	Total	PHF	Time
Period	1 Right	2 Thru	3 Left	Total	4 Right	5 Thru	6 Left	Total	7 Right	8 Thru	9 Left	Total	10 Right	11 Thru	12 Left	Total	& South	& West			Penod
AM			_							_		_		0			200	4	292		7 00-7 1
7 00-7 15	11	277	0		0	0	્રી	0	0	0	0	0	10	0	0	10	288 300	10	310		7 15-7 3
7 15-7 30	12	288	0		0	0	쒸	0	0	٥		0	11	0	Ö	11	295	11	306		7 30 7 4
7 30-7 45	24 25	271 254	0		0	o	0 0	0	ő	0		0	12	ő	o	12		12	291		7 45-8 0
7 45-8 00 8 00-8 15	25	240	0		o	ō	ő	0	ō	ő		٥	17	ŏ	ō	17	265	17	282		8 00-8 1
8 15-8 30	29	230	Ö		ا ا	ŏ	ŏ	ŏ	ő	Ŏ	ŏ	Ö	14	ō	ō	14		14	273		8 15-8 3
8 30-8 45	12	226	ŏ		o	ŏ	ŏÌ	ŏ	Ö	0			19	ا	اها	19		19	257		8 30-8 4
B 45-9 00	15	200	ŏ		ا	ō	ō	ō	0	Ō		o	17	o	0	17	215	17	232		8 45 9 0
9 00 9 15	12	160	ō		o	0	o	ō	0	0		0	11	0	0	11	172	11	183		9 00 9 1
9 15-9 30	13	134	ō	147	ō	ō	ō	ō	0	0		0	14	0	0	14	147	14	161		9 15-9 3
9 30 9 45	10	114	ō		0	0	o	0	0	0		0	8	0	0	8	124	8	132		9 30-9 4
9 45-10 00	13	105	0	118	0	0	0	0	0	0	0	0	8	0	0	8	118	8	126		9 45-10
3 Hour		- 400									0	0	145	0	0	445	2,700	145	2 845		
Totals	201	2,499	0	2 700	0	0	ó	0	0	0		U	140		U	143	2,700	143	- 043		
1 Hour	l i																				1
Totals 7 00-8 00	72	1 090	0	1 162	0	0	0	0	0	0	0	0	37	o	o	37	1 162	37	1 199	0 97	7 00-8 0
7 15-8 15	86	1 053	ŏ		1 1	0	. 0	0		ő				ō		50		50	1 189		7 15-8 1
7 30-8 30	103	995	Ö		ŏ	Ö	o,	Ö		ŏ			54	0		54		54	1 152	0 94	7 30-8 3
7 45-8 45	91	950	ő		Ŏ	ō	o	ō		0				0	0	62		62	1 103	0 95	7 45-8 4
8 00-9 00	81	896	ŏ		o	0	Ö	0		0			67	0	0	67	977	67	1 044	0 93	8 00-9 0
8 15-9 15	68	816	ŏ		Ō	0	o	0		0	0	0	61	0	0	61	884	61	945		8 15-9 1
8 30-9 30	52	720	0	772	0	0	0	0	0	0	0		61	0		61		61	833		8 30-9 3
8 45-9 45	50	608	0	658		0	0	0	0	0		0	50	0		50		50	708		8 45-9 4
9 00-10 00	48	513	0	561	0	0	٥	0	0	0	0	0	41	0	0	41	561	41	602	0 82	9 00 10
AM Peak						_							-			27	4 463	27	1 199	0.07	AM Pea 7 00-8 0
7 00-8 00 PM	72	1 090	0	1,162	0	0	0	0	0	0	0		37	- 0	0	37	1,162	37	1 199	0 97	7 00-6 0
4 00-4 15	20	107	0	127	o	0	a	0	0	0	ه ا	0	15	0	0	15	127	15	142		4 00-4 1
4 15-4 30	25	103	ŏ			ő	ō	ő		ō				0		20			148		4 15-4 3
4 30-4 45	30	96	ŏ			ő	ŏ	ō	ō	ŏ	ō			0	0	9			135		4 30-4 4
4 45 5 00	24	102	ō			D	ō	Ō	0	0	0		9	0	C	9	126		135		4 45 5 0
5 00 5 15	19	106	0			Đ	0	0	0	0	0	0	15	0	0	15	125		140		5 00 5 1
5 15 5 30	19	94	0			0	0	0	0	0			8	0	0	8		8	121		5 15-5 3
5 30 5 45	23	97	0	120		0	0	0	0	0		0	7	0	0	7			127		5 30-5 4
5 45-6 00	36	93	0			0	o	0	0	0		0	8	0		8		8	137		5 45-6 0
6 00-6 15	34	92	0			0	0	0	0	0			13	0	0	13			139		6 00-6 1
6 15-6 30 j	31	103	0		٥	0	0	0	0	0			14	0	0	14		14	148		6 15-6 3 6 30-6 4
6 30-6 45	18 24	108 78	0			0	0	0	0	0			12 10	0	0	12 10			138 112		6 45-7 0
6 45-7 00	24	10.	U	102			"	5		Ì]]		<u>ו</u>]]			
3 Hour Totals	302	1 179	ń	1 482	- 0	0	0	0	0		-	0	140	0	0	140	1,482	140	1 622		l
1 Hour	303			. 702	 					<u>`</u>		<u></u>									
Totals						l i				Ì	l						l				
4 00-5 00	99	408	0	507	0	0	o	0		0						53		53	560		4 00 5 0
4 15-5 15	98	407	ō			ō	o		0	0	0	0	53	0		53					4 15 5 1
4 30 5 30	92	398	Ō	490	0	0	0	0		_				0		41			531		4 30 5 3
4 45-5 45	85	399	0			0	o	0		0						39		39			4 45 5 4
5 00-6 00	97	390	0		0	0	0	0						0		38		38	525		5 00-6 0
5 15-6 15	112	376	0	488	0	0	0	0						0		36			524		5 15-6 1
5 30-6 30	124	385	0		0	0	0	0								42					5 30-6 3
5 45-6 45	119	396	0			0	0														5 45-6
6 00 7 00	107	381	0	488	0	0	0	0	0	0	0	0	49	0	0	49	488	49	537	U 91	6 00 7 1
PM Peak																					PM Pea

Linda Joy & Kenneth Jay Pollin Memorial Community Transportation Impact Study Washington, D C

Appendix B

Existing Pedestrian Traffic Counts

Project Number 2^
Location washing_o EC

Intersection Haves St ~ Fen lwe th Telr
Weather Cles

Date 3/30/2006

Surveyor Jinie & Home

Kenilworth Terrace NE

Kenilworth Terrace NE

Hourly Pedestrian Count

			1	2	3	4	5	6	7	8					
		From	SE	NE	SW	SE	SW	NW	NW	NE	Total	1 & 2	3 & 4	5 & 6	7 & 8
Time	Period	To	NE	SE	SE	SW	ИW	SW	NE	NW					
AM PEAK															
7 00	8 00		16	43	2	19	38	20	1	11	150	59	21	58	12
7 15	8 15		22	51	2	27	107	21	1	14	245	73	29	128	15
7 30	8 30		23	69	2	40	141	19	1	7	302	92	42	160	8
7 45	8 45		16	73	0	41	162	17	1	6	316	89	41	179	7
8 00	9 00		14	63	0	35	161	14	2	5	294	77	35	175	7
8 15	9 15		19	63	0	29	104	15	1	1	232	82	29	119	2
8 30	9 30		20	37	1	14	72	11	1	2	158	57	15	83	3
8 45	9 45		21	27	1	10	42	6	1	3	111	48	11	48	4
9 00	10 00		26	28	1	11	23	5	0	2	96	54	12	28	2
PM PEAK															
4 00	5 00		40	23	3	4	8	34	6	2	120	63	7	42	8
4 15	5 15		42	38	4	2	11	35	5	3	140	80	6	46	8
4 30	5 30		38	39	4	6	13	18	0	2	120	77	10	31	2
4 45	5 45		44	52	6	6	13	27	0	2	150	96	12	40	2
5 00	6 00		52	54	5	7	19	20	6	2	165	106	12	39	8
5 15	6 15		48	39	5	8	16	15	6	1	138	87	13	31	7
5 30	6 30		46	34	7	5	13	10	7	3	125	80	12	23	10
5 45	6 45		53	27	6	6	12	1	7	7	119	80	12	13	14
6 00	7 00	_	53	32	5	5	5	1	1	11	113	85	10	6	12

Project Name	rarrsije Housing	
Project Number	3214	
Location	was' ington Du	
Intersection	Penilwoith Aug &	Ha es s
Weather	_t ı	
Date	/"0/	1906
Surveyor	ra * rrll	

Kenilworth Avenue NE

Kenilworth Avenue NE

Hourly Pedestrian Count

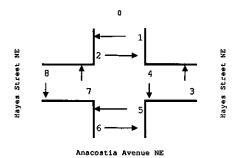
				1	2	3	4	5	6	7	8					
			From	SE	NE	SW	SE	SW	NW	NW	NE	Total	1 & 2	3 & 4	5 & 6	7 & 8
		Period	То	NE	SE	SE	SW	NW	SW	NE	NW					
AM F																
7	00	8 00		0	0	0	0	19	46	16	46	127	0	0	65	62
7	15	8 15		0	0	0	0	22	51	19	51	143	0	0	73	70
7	30	8 30		0	0	0	0	24	51	21	51	147	0	0	75	72
7	45	8 45		0	0	0	0	18	40	18	40	116	0	0	58	58
8	00	9 00		0	0	0	0	13	27	13	27	80	0	0	40	40
8	15	9 15		0	0	0	0	20	19	20	19	78	0	0	39	39
8	30	9 30		0	0	0	0	16	11	16	11	54	0	0	27	27
8	45	9 45		0	0	0	0	14	15	14	15	58	0	0	29	29
9	00	10 00		0	0	0	0	13	12	13	12	50	0	0	25	25
PM F	PEAK															
4	00	5 00		0	0	0	0	51	9	51	9	120	0	0	60	60
4	15	5 15		0	0	0	0	41	15	41	15	112	0	0	56	56
4	30	5 30		0	0	0	0	56	22	56	21	155	0	0	78	77
4	45	5 45		0	0	0	0	74	19	74	18	185	0	0	93	92
5	00	6 00		0	0	0	0	78	21	78	20	197	0	0	99	98
5	15	6 15		0	0	0	0	75	17	75	16	183	0	0	92	91
5		6 30		0	0	0	0	62	12	62	12	148	0	0	74	74
5		6 45		0	0	0	0	55	12	55	12	134	0	0	67	67
	00	7 00		0	0	0	0	61	6	61	6	134	0	0	67	67

Project Name EarFixed Holling

Project Number 3234

Location Washington DC

Intersection Anacostia and Baller St


Weather Cieal

Date 3/^6/2006

Surveyor All & eiri

1

2

Hourly Pedestrian Count

		From	SE	NE	SW	SE	SW	NW	NW	NE	Total	1 & 2	3 & 4	5 & 6	7 & 8
7	Time Period	To	NE	SE	SE	SW	NW	SW	NE	NW					
AM PE	EAK														
7 0	0 8 00		16	28	2	18	2	3	1	32	102	44	20	5	33
7 1	5 8 15	ı	18	45	6	32	5	6	5	77	194	63	38	11	82
7 3	0 8 30	ı	20	53	10	32	9	9	13	121	267	73	42	18	134
74	5 8 45	ı	30	53	13	33	11	6	17	140	303	83	46	17	157
8 0	0 9 00		26	52	14	29	11	6	19	115	272	78	43	17	134
8 1	5 9 15	ı	32	29	10	11	7	3	18	71	181	61	21	10	89
8 3	0 9 30		31	18	5	9	2	0	10	30	105	49	14	2	40
8 4	5 9 45	ı	19	12	2	2	0	0	7	8	50	31	4	0	15
9 0	0 10 0	0	18	12	0	2	0	0	4	4	40	30	2	0	8
PM PF	EAK														
4 0	0 5 00	1	34	17	14	12	3	1	В	2	91	51	26	4	10
4 1	5 5 15	i	23	18	13	15	2	2	7	2	82	41	28	4	9
4 3	0 5 30	1	17	14	15	10	5	4	12	3	80	31	25	9	15
44	5 5 45	i	15	16	15	11	5	4	14	2	82	31	26	9	16
5 0	0 6 00	1	23	17	12	10	5	7	10	2	86	40	22	12	12
5 1	5 6 15	i	17	22	15	9	6	7	11	3	90	39	24	13	14
5 3	0 6 30	1	15	28	9	9	3	4	11	2	81	43	18	7	13
5 4	5 6 45	i	17	27	10	10	6	6	9	2	87	44	20	12	11
6 0	0 7 00	1	11	27	12	11	5	4	8	2	80	38	23	9	10

5

7 8

Project Name Parksije Ho si j Project Number 214 Location Washington Do Intersection Yenilworth A e → Foote St Weather Ciear 3/ 0/_006 Date Surveyor filton r/1

Foote Street NE

Kenilworth Avenue NE

Kenilworth Avenue NE

Hourly Pedestrian Count

			1	2	3	4	5	6	7	8					
Time	Period	From To	SE NE	NE SE	SW SE	SE SW	SW NW	NW SW	NW NE	NE NW	Total	1 & 2	3 & 4	5 & 6	7 & 8
AM PEAK	161100	10	NL	34	55	J.		34	146	2111					
7 00	8 00		0	0	0	0	0	0	0	0	0	0	0	0	0
7 15	8 15		0	0	0	0	0	0	0	0	0	0	0	0	0
7 30	8 30		0	0	0	0	0	0	0	0	0	0	0	o	0
7 45	8 45		0	0	0	0	0	0	0	0	0	0	0	0	0
8 00	9 00		0	0	0	0	0	1	0	0	1	0	0	1	0
8 15	9 15		0	0	0	0	0	2	0	0	2	0	0	2	0
8 30	9 30		0	0	0	0	0	2	0	0	2	0	0	2	0
8 45	9 45		0	0	0	0	0	2	0	0	2	0	0	2	0
9 00	10 00		0	0	0	0	0	1	0	0	1	0	0	1	0
PM PEAK															
4 00	5 00		0	0	0	0	0	0	0	0	0	0	0	0	0
4 15	5 15		0	0	0	0	0	0	0	0	0	0	0	0	0
4 30	5 30		0	0	0	0	0	0	0	0	0	0	0	0	0
4 45	5 45		0	0	0	0	0	0	0	0	0	0	0	0	0
5 00	6 00		0	0	0	O	0	0	0	0	0	0	0	0	0
5 15	6 15		0	0	0	0	0	0	0	0	0	0	0	0	0
5 30	6 30		0	0	0	0	0	0	0	0	0	0	0	0	0
5 45	6 45		٥	0	0	0	0	0	0	0	0	0	0	0	0
6 00	7 00		0	0	0	0	0	0	0	0	0	0	0	0	0

Linda Joy & Kenneth Jay Pollin Memorial Community Transportation Impact Study Washington, D C

Appendix C

Existing Levels of Service

	۶	*	1	Ť	Ţ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		7			朴孙		
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Volume (veh/h)	0	54	0	0	437	56	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	59	0	0	475	61	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	505	268	536				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	505	268	536				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	92	100				
cM capacity (veh/h)	496	730	1028				
Direction, Lane #	EB 1	SB 1	SB 2				
Volume Total	59	317	219				
Volume Left	0	0	0				
Volume Right	59	0	61				
cSH	730	1700	1700				
Volume to Capacity	0.08	0.19	0.13				
Queue Length 95th (ft)	7	0	0				
Control Delay (s)	10.4	0.0	0.0				
Lane LOS	В						
Approach Delay (s)	10.4	0.0					
Approach LOS	В						
Intersection Summary							
Average Delay			1.0				
Intersection Capacity Ut	Hilization		23.9%	10	ILLOVO	of Serv	at a control of the c

	-	*	*	-	4	-	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations				ন	75		
Sign Control	Stop			Stop	Stop		
Volume (vph)	0	0	64	134	7	0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	0	70	146	8	0	
Direction, Lane #	WB 1	NB 1					
Volume Total (vph)	215	8					
Volume Left (vph)	70	8					
Volume Right (vph)	0	0					
Hadj (s)	0.10	0.23					
Departure Headway (s)	4.0	4.6					
Degree Utilization, x	0.24	0.01					
Capacity (veh/h)	889	740					
Control Delay (s)	8.3	7.6					
Approach Delay (s)	8.3	7.6					
Approach LOS	Α	Α					
Intersection Summary							
Delay			8.3				
HCM Level of Service			Α				
Intersection Capacity Ut	ilization		27.3%	10	CU Leve	el of Sei	rvice A
Analysis Period (min)			15				

	•	→	*	*	+-	4	1	Ť	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					44			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	0	0	0	3	93	4	0	85	24	18	59	194
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	3	101	4	0	92	26	20	64	211
Direction, Lane #	WB 1	NB 1	SB 1						450 (15)			
Volume Total (vph)	109	118	295									
Volume Left (vph)	3	0	20									
Volume Right (vph)	4	26	211									
Hadj (s)	0.02	-0.10	-0.38									
Departure Headway (s)	4.8	4.4	3.9									
Degree Utilization, x	0.14	0.14	0.32									
Capacity (veh/h)	692	788	893									
Control Delay (s)	8.6	8.1	8.8									
Approach Delay (s)	8.6	8.1	8.8									
Approach LOS	Α	Α	Α									
Intersection Summary												
Delay			8.6									
HCM Level of Service			Α									
Intersection Capacity Ut	tilization		42.5%	10	CU Leve	el of Ser	vice		Α			
Analysis Period (min)			15									

	•	*	4	†	1	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		7			44		
Sign Control	Stop	Market Par		Free	Free		
Grade	0%			0%	0%		
Volume (veh/h)	0	37	0	0	1090	72	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	40	0	0	1185	78	
Pedestrians	51						
Lane Width (ft)	12.0						
Walking Speed (ft/s)	4.0						
Percent Blockage	4						
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	1275	683	1314				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1275	683	1314				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	89	100				
cM capacity (veh/h)	152	375	500				
Direction, Lane #	EB 1	SB 1	SB 2				
Volume Total	40	790	473				
Volume Left	0	0	0				
Volume Right	40	0	78				
cSH	375	1700	1700				
Volume to Capacity	0.11	0.46	0.28				
Queue Length 95th (ft)	9	0	0				
Control Delay (s)	15.7	0.0	0.0				
Lane LOS	С						
Approach Delay (s)	15.7	0.0					
Approach LOS	С						
Intersection Summary							
Average Delay			0.5				
Intersection Capacity Ut	tilization		42.7%	10	CU Leve	el of Service A	
Analysis Period (min)			15				

	•	•	4	†	1	√
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7			^	
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Volume (veh/h)	0	44	0	0	99	10
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	48	0	0	108	11
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	113	59	118			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	113	59	118			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	95	100			
cM capacity (veh/h)	871	994	1467			
Direction, Lane #	EB 1	SB 1	SB 2			
Volume Total	48	72	47			
Volume Left	0	0	0			
Volume Right	48	0	11			
cSH	994	1700	1700			
Volume to Capacity	0.05	0.04	0.03			
Queue Length 95th (ft)	4	0	0			
Control Delay (s)	8.8	0.0	0.0			
Lane LOS	Α					
Approach Delay (s)	8.8	0.0				
Approach LOS	Α					
Intersection Summary	i i i i entro		7.50			
Average Delay			2.5			
Intersection Capacity Ut	ilization		13.3%	IC	U Leve	el of Service A
Analysis Period (min)			15			

	-	7	*	-	4	-	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations				ન	7		
Sign Control	Stop			Stop	Stop		
Volume (vph)	0	0	27	233	7	0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	0	29	253	8	0	
Direction, Lane #	WB 1	NB 1					
Volume Total (vph)	283	8					Control Contro
Volume Left (vph)	29	8					
Volume Right (vph)	0	0					
Hadj (s)	0.05	0.23					
Departure Headway (s)	4.0	4.7					
Degree Utilization, x	0.31	0.01					
Capacity (veh/h)	899	710					
Control Delay (s)	8.8	7.8					
Approach Delay (s)	8.8	7.8					
Approach LOS	Α	Α					
Intersection Summary							
Delay			8.7				
HCM Level of Service			Α				
Intersection Capacity Ut Analysis Period (min)	tilization		23.8% 15	- 10	CU Leve	el of Ser	vice A

	ᄼ	→	•	1	4	•	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			4			43	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	0	0	0	12	85	5	3	109	41	13	31	157
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	13	92	5	3	118	45	14	34	171
Direction, Lane #	WB 1	NB 1	SB 1		Arright and State of the							
Volume Total (vph)	111	166	218									
Volume Left (vph)	13	3	14									
Volume Right (vph)	5	45	171									
Hadj (s)	0.03	-0.12	-0.42									
Departure Headway (s)	4.7	4.3	3.9									
Degree Utilization, x	0.15	0.20	0.24									
Capacity (veh/h)	701	809	875									
Control Delay (s)	8.5	8.3	8.2									
Approach Delay (s)	8.5	8.3	8.2									
Approach LOS	Α	Α	Α									
Intersection Summary												
Delay			8.3									
HCM Level of Service			Α									
Intersection Capacity Ut Analysis Period (min)	tilization	ř-	39.6% 15	10	CU Leve	el of Ser	vice		Α			

	•	*	4	†	1	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		75			ት ኩ		
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Volume (veh/h)	0	47	0	0	396	119	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	51	0	0	430	129	
Pedestrians	67						
Lane Width (ft)	12.0						
Walking Speed (ft/s)	4.0						
Percent Blockage	6						
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	562	347	627				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	562	347	627				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	92	100				
cM capacity (veh/h)	431	613	898				
Direction, Lane#	EB 1	SB 1	SB 2	yl .			
Volume Total	51	287	273				
Volume Left	0	0	0				
Volume Right	51	0	129				
cSH	613	1700	1700				
Volume to Capacity	0.08	0.17	0.16				
Queue Length 95th (ft)	7	0	0				
Control Delay (s)	11.4	0.0	0.0				
Lane LOS	В						
Approach Delay (s)	11.4	0.0					
Approach LOS	В						
Intersection Summary			an in the same				
Average Delay			1.0				
Intersection Capacity Ut	ilization		25.9%	IC	CU Leve	of Serv	vice A
Analysis Period (min)			15				

Linda Joy & Kenneth Jay Pollin Memorial Community Transportation Impact Study Washington, D C

Appendix D

Background Future Levels of Service

	٠		*	Ť	1	✓	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	74			ቀ ጉ		
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Volume (veh/h)	0	76	0	0	527	81	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	83	0	0	573	88	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	617	330	661				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	617	330	661				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	88	100				
cM capacity (veh/h)	422	665	923				
Direction, Lane#	EB 1	SB 1	SB 2				
Volume Total	83	382	279				
Volume Left	0	0	0				
Volume Right	83	0	88				
cSH	665	1700	1700				
Volume to Capacity	0.12	0.22	0.16				
Queue Length 95th (ft)	11	0	0				
Control Delay (s)	11.2	0.0	0.0				
Lane LOS	В						
Approach Delay (s)	11.2	0.0					
Approach LOS	В						
Intersection Summary							
Average Delay			1.2	egi.	227278		
Intersection Capacity Ut	ilization		28.5%	IC	CU Leve	of Service A	
Analysis Period (min)			15				

	-	•	6	-	4	-	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	CHARLES
Lane Configurations				ধ	ሻ		
Sign Control	Stop			Stop	Stop		
Volume (vph)	0	0	65	136	7	0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	0	71	148	8	0	
Direction, Lane #	WB 1	NB 1					
Volume Total (vph)	218	8					
Volume Left (vph)	71	8					
Volume Right (vph)	0	0					
Hadj (s)	0.10	0.23					
Departure Headway (s)	4.0	4.6					
Degree Utilization, x	0.24	0.01					
Capacity (veh/h)	889	739					
Control Delay (s)	8.3	7.7					
Approach Delay (s)	8.3	7.7					
Approach LOS	Α	Α					
Intersection Summary							
Delay			8.3				
HCM Level of Service			Α				
Intersection Capacity Ut	ilization		27.4%	IC	CU Leve	el of Serv	ice
Analysis Period (min)			15				

	٠	-	*	1	-	*	4	1	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		43			44			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	11	11	0	13	96	4	0	110	76	117	73	199
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	12	12	0	14	104	4	0	120	83	127	79	216
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								the sta
Volume Total (vph)	24	123	202	423								
Volume Left (vph)	12	14	0	127								
Volume Right (vph)	0	4	83	216								
Hadj (s)	0.13	0.04	-0.21	-0.21								
Departure Headway (s)	5.7	5.4	4.6	4.3								
Degree Utilization, x	0.04	0.18	0.26	0.51								
Capacity (veh/h)	549	600	747	801								
Control Delay (s)	8.9	9.6	9.1	11.8								
Approach Delay (s)	8.9	9.6	9.1	11.8								
Approach LOS	Α	Α	Α	В								
Intersection Summary												
Delay		13.	10.6									11
HCM Level of Service			В									
Intersection Capacity Ut	ilization	i .	57.8%	K	CU Leve	el of Ser	vice		В			
Analysis Period (min)			15									

	•	•	•	†	ļ	√	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		7			† ‡		
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Volume (veh/h)	0	187	0	0	1425	84	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	203	0	0	1549	91	
Pedestrians	51						
Lane Width (ft)	12.0						
Walking Speed (ft/s)	4.0						
Percent Blockage	4						
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	1646	871	1691				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1646	871	1691				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	28	100				
cM capacity (veh/h)	86	282	358				
Direction, Lane #	EB 1	SB 1	SB 2				
Volume Total	203	1033	608				
Volume Left	0	0	0				
Volume Right	203	0	91				
cSH	282	1700	1700				
Volume to Capacity	0.72	0.61	0.36				
Queue Length 95th (ft)	128	0	0				
Control Delay (s)	45.0	0.0	0.0				
Lane LOS	E						
Approach Delay (s)	45.0	0.0					
Approach LOS	E						
Intersection Summary							
Average Delay			5.0				
Intersection Capacity Ut	tilization		60.5%	IC	CU Leve	el of Service B	
Analysis Period (min)			15				

	•	•	•	†	1	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations		77			ተ ፉ		
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Volume (veh/h)	0	62	0	0	321	68	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	67	0	0	349	74	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)	None						
Median type Median storage veh)	None						
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	386	211	423				
vC1, stage 1 conf vol	300	411	720				
vC2, stage 2 conf vol							
vCu, unblocked vol	386	211	423				
tC, single (s)	6.8	6.9	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	92	100				
cM capacity (veh/h)	590	794	1133				
Direction, Lane #	EB 1	SB 1	SB 2				
Volume Total	67	233	190				
Volume Left	0	0	0				
Volume Right	67	0	74				
cSH	794	1700	1700				
Volume to Capacity	0.08	0.14	0.11				
Queue Length 95th (ft)	7	0	0				
Control Delay (s)	10.0	0.0	0.0				
Lane LOS	A						
Approach Delay (s)	10.0	0.0					
Approach LOS	Α						
Intersection Summary							
Average Delay			1.4		422		2
Intersection Capacity Ut	ilization		21.5%	IC	U Leve	of Serv	ice A
Analysis Period (min)			15				

	-	•	1	-	4	-	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations				4	*5		
Sign Control	Stop			Stop	Stop		
Volume (vph)	0	0	27	237	7	0	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	0	29	258	8	0	
Direction, Lane #	WB 1	NB 1					
Volume Total (vph)	287	8					
Volume Left (vph)	29	8					
Volume Right (vph)	0	0					
Hadj (s)	0.05	0.23					
Departure Headway (s)	4.0	4.8					
Degree Utilization, x	0.32	0.01					
Capacity (veh/h)	899	708					
Control Delay (s)	8.8	7.8					
Approach Delay (s)	8.8	7.8					
Approach LOS	Α	Α					
Intersection Summary		5 (0)					
Delay			8.8				
HCM Level of Service			Α				
Intersection Capacity Ut	ilization		24.0%	10	CU Leve	el of Ser	vice A
Analysis Period (min)			15				

Hayes St & Kennilworth T	3:	: Have	es St	Č.	Kennil	worth	1 err
--	----	--------	-------	----	--------	-------	-------

	٨	-	*	1	-	•	1	1	-	1	1	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		43			4			43			4	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	9	9	0	39	91	5	3	147	100	59	67	164
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	10	10	0	42	99	5	3	160	109	64	73	178
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	20	147	272	315								
Volume Left (vph)	10	42	3	64								
Volume Right (vph)	0	5	109	178								
Hadj (s)	0.13	0.07	-0.20	-0.26								
Departure Headway (s)	5.6	5.3	4.5	4.4								
Degree Utilization, x	0.03	0.22	0.34	0.39								
Capacity (veh/h)	551	611	760	777								
Control Delay (s)	8.8	9.8	9.9	10.2								
Approach Delay (s)	8.8	9.8	9.9	10.2								
Approach LOS	Α	Α	Α	В								
Intersection Summary												
Delay			10.0									
HCM Level of Service			Α									
Intersection Capacity Ut	lization	i	55.1%	10	CU Leve	el of Ser	vice		В			
Analysis Period (min)			15									

	٠	*	4	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7			朴	
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Volume (veh/h)	0	151	0	0	545	153
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	164	0	0	592	166
Pedestrians	67			67		
Lane Width (ft)	12.0			0.0		
Walking Speed (ft/s)	4.0			4.0		
Percent Blockage	6			0		
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	743	513	826			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	743	513	826			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	66	100			
cM capacity (veh/h)	331	478	756			
Direction, Lane #	EB 1	SB 1	SB 2			
Volume Total	164	395	364			
Volume Left	0	0	0			
Volume Right	164	0	166			
cSH	478	1700	1700			
Volume to Capacity	0.34	0.23	0.21			
Queue Length 95th (ft)	38	0	0			
Control Delay (s)	16.4	0.0	0.0			
Lane LOS	С					
Approach Delay (s)	16.4	0.0				
Approach LOS	С					
Intersection Summary						
Average Delay			2.9			
Intersection Capacity Ut	ilization		41.8%	IC	U Leve	el of Service A
Analysis Period (min)			15			