

TABLE 1 DESIGN CRITERIA FOR VEGETATIVE COVERS

Measure	Extent and Material	Dimensions	Hydraulic	Avoid	Miscellaneous
Temporary Seeding	Place topsoil as needed, to enhance plant growth. A loamy soil with an organic content of 1.5 percent or greater is preferred. Use rapid-growing annual grasses, small grains, or legumes. Apply seeds using a cyclone seeder, drill, cultipacker seeder, or hydroseeder.	Place topsoil where needed to a minimum compacted depth of 2 inches on 3:1 slopes or steeper; and of 4 inches on flatter slopes.	Divert channelized flow away from temporarily seeded areas to prevent erosion and scouring.	Heavy clay or organic soils as topsoil. Handbroadcasting of seeds (not uniform), except in very small areas. Mowing temporary vegetation. High-traffic areas.	Use where vegetation cover is needed for less than 1 year. Use chisel plow or tiller to loosen compacted soils. As needed, apply water, fertilizer, lime, and mulch. Incorporate lime and fertilizer into top 4-6 inches of soil. Plant small grains 1 inch deep. Plant grasses and legume 1/2 inch deep.
Permanent Seeding	Place topsoil as needed to enhance plant growth. A loamy soil with an organic content of 1.5 percent or greater is preferred. Where possible, use low maintenance local plant species. Apply seeds using a cyclone seeder, drill, cultipacker seeder, or hydroseeder.	Apply mulch to slopes 4:1 or steeper if soil is sandy or clayey, or if weather is excessively hot or dry. Place topsoil where needed.	Divert channelized flow away from temporarily seeded areas to prevent erosion and scouring.	Heavy clay or organic soils as topsoil. Hand broadcasting of seeds (not uniform), except in very small areas. High-traffic areas.	Use chisel plow or tiller to loosen compacted soils. As needed, apply water, fertilizer, lime, and mulch. Incorporate lime and fertilizer into top 4-6 inches of soil. Plant small grains 1 inch deep. Plant grasses and legume 1/2 inch deep.
Sodding	Sod should be machine-cut at a uniform thickness of ½ to 2 inches.		In waterways, select plant types able to withstand design flow velocity.	Gravel or nonsoil surfaces. Unusually wet or hot weather. Frozen soils. Mowing for at least two to three weeks.	Prior to laying sod, clear soil surface of debris, roots, branches, and stones bigger than 2 inches in diameter. Sod should be harvested, delivered, and installed within 36 hours. Lay sod with staggered joints along the contour. Lightly irrigate soils before sod placement during dry or hot periods. After placement, roll sod and wet soil to a depth of 4 inches. On slopes steeper than 3:1, secure sod with stakes. In waterways, lay sod perpendicular to water flow. Secure sod with stakes, wire, or netting.
Preservation of Natural Vegetation	Careful planning is required prior to start of construction.	Wherever possible, maintain existing contours.	Maintain existing hydraulic characteristics	Activities within the drop line of trees. Concentrating flows at new locations.	Preservation of vegetation should be planned before any site disturbance begins. Proper maintenance is vitally important. Clearly mark areas to be preserved.

Source: HCD, 1989.

TABLE 2 INSTALLATION COSTS

Description	Unit	Location	Material	Labor	Equipment	Indirect Cost	Total Cost	Year of Cost	Comments
Sodding									
<i>Level</i>									
>400 yd ²	yd ²	Loganville, GA ¹	\$2.07	\$1.80	\$0.30	\$1.68	\$5.85	Jan-99	
	yd ²	Dubuque, IA ²	\$1.15	\$0.93	\$0.05	\$1.07	\$3.20	1998	Indirect costs include: \$0.11 for indirect time, \$0.56 for profit, and \$0.40 for shipping/semi load.
101 yd ²	yd ²	Loganville, GA ¹	\$2.70	\$1.80	\$0.30	\$1.68	\$6.40	Jan-99	
	yd ²	Dubuque, IA ²	\$1.15	\$0.94	\$0.05	\$1.46	\$3.60	1998	Indirect costs include: \$0.43 for indirect time, \$0.64 for profit and \$0.40 for shipping/semi load
50 yd ²	yd ²	Loganville, GA ¹	\$2.70	\$1.80	\$0.30	\$1.68	\$6.48	Jan-99	
	yd ²	Dubuque, IA ²	\$1.15	\$0.98	\$0.05	\$2.00	\$4.18	1998	Indirect costs include: \$0.86 for indirect time, \$0.75 for profit and \$0.40 for shipping/semi load
<i>Slopes</i>									
401 yd ²	yd ²	Loganville, GA ¹	\$2.70	\$1.80	\$0.30	\$1.68	\$6.48	Jan-99	
	yd ²	Dubuque, IA ²	\$1.15	\$1.23	\$0.05	\$1.13	\$3.56	1998	Indirect costs include: \$0.11 for indirect time, \$ 0.62 for profit and \$0.40 for shipping/semi load
Seeding									
Mechanical Seeding	Acre	Hollston, MA ³	\$653.00	\$435.00	\$222.00	\$430.00	\$1,940.00	1998	pricing includes seed, fertilizer, hydromulch, and water only
	yd ²	Hollston, MA ³	\$0.14	\$0.09	\$0.05	\$0.09	\$0.36	1998	pricing includes seed, fertilizer, hydromulch, and water only
Acre	Acre	Loganville, GA ¹	\$931.40	\$600.00	\$300.00	\$497.10	\$2,328.50	Jan-99	
	yd ²	Loganville, GA ¹	\$0.18	\$0.12	\$0.06	\$0.10	\$0.46	Jan-99	
	Acre	Dubuque, IA ²	\$1,267.21	\$142.94	\$258.70	\$436.23	\$2,105.08	1998	Indirect costs include: \$103.50 for indirect time, \$ 332.73 for profit, provided that equipment is available. Does not include grading. Includes straw mulch.
	yd ²	Dubuque, IA ²	\$0.26	\$0.13	\$0.24	\$0.10	\$0.73	1998	

TABLE 2 (CONTINUED) INSTALLATION COSTS

Description	Unit	Location	Material	Labor	Equipment	Indirect Cost	Total Cost	Year of Cost	Comments
Fine Grade/Seed	yd ²	Loganville, GA ¹	\$0.18	\$0.12	\$0.06	\$0.10	\$0.46	Jan-99	Includes fertilizer & lime
	yd ²	Dubuque, IA	\$0.26	\$0.13	\$0.24	\$0.10	\$0.73	1998	Indirect costs include: 0.02 for indirect time and 0.08 for profit; equipment is owned and costs include straw mulch
<i>Push Spreader</i>									
Grass Seed	1,000 ft ²	Loganville, GA ¹	\$15.00	\$6.25	\$0.30	\$3.45	\$25.00	Jan-99	
	1,000 ft ²	Dubuque, IA ²	\$15.18	\$8.88	\$54.00	\$100.82	\$178.88	1998	Indirect costs include: \$80.00 for indirect time and \$20.82 for profit; does not include mulch
Limestone	1,000 ft ²	Loganville, GA ¹	\$2.85	\$6.25	\$0.30	\$1.00	\$10.00	Jan-99	
	1,000 ft ²	Dubuque, IA ²	\$2.50	\$8.88	\$54.00	\$98.28	\$163.66	1998	Indirect costs include: \$80.00 for indirect time and \$12.28 for profit; does not include mulch
Fertilizer	1,000 ft ²	Loganville, GA ¹	\$3.33						
	1,000 ft ²	Dubuque, IA ²	\$2.80	\$8.88	\$54.00	\$98.34	\$164.02	1998	Indirect costs include: \$80.00 for indirect time and \$18.34 for profit; does not include mulch
Level Areas	Acre	Loganville, GA ¹	\$750.00	\$600.00	\$139.50	\$839.50	\$2,328.50	Jan-99	
	Acre	Dubuque, IA ²	\$661.24	\$109.26	\$120.00	\$251.30	\$1,141.80	1998	Indirect costs include: \$81.00 for indirect time and \$170.30 for profit; does not include mulch
Sloped Areas	Acre	Loganville, GA ¹	\$750.00	\$600.00	\$139.50	\$839.50	\$2,328.50	Jan-99	
	Acre	Dubuque, IA ²	\$661.24	\$222.12	\$120.00	\$257.83	\$1,261.19	1998	Indirect costs include: \$81.00 for indirect time and \$176.83 for profit; does not include mulch

1 information provided by Earthscape Landscaping and Lawn Care

2 information provided by Weathers Landscape Services

3 information provided by New England Hydroseeding, Inc.

Wisconsin Valley Improvement Company
Cathy J. Wendt
2301 North 3rd St.
Wausau, WI 54403

The mention of trade names or commercial products does not constitute endorsement or recommendation for the use by the U.S. Environmental Protection Agency.

For more information contact:

Municipal Technology Branch
U.S. EPA
Mail Code 4204
401 M St., S.W.
Washington, D.C., 20460

Stormwater Phase II Final Rule

Small Construction Program Overview

Stormwater Phase II Final Rule Fact Sheet Series

Overview

1.0 – Stormwater Phase II
Proposed Rule: An Overview

Small MS4 Program

2.0 – Small MS4 Stormwater
Program Overview

2.1 – Who's Covered? Designation
and Waivers of Regulated Small
MS4s

2.2 – Urbanized Areas: Definition
and Description

Minimum Control Measures

2.3 – Public Education and
Outreach

2.4 – Public Participation/
Involvement

2.5 – Illicit Discharge Detection
and Elimination

2.6 – Construction Site Runoff
Control

2.7 – Post-Construction Runoff
Control

2.8 – Pollution Prevention/Good
Housekeeping

2.9 – Permitting and Reporting:
The Process and Requirements

2.10 – Federal and State-Operated
MS4s: Program Implementation

Construction Program

3.0 – Construction Program
Overview

3.1 – Construction Rainfall
Erosivity Waiver

Industrial "No Exposure"

4.0 – Conditional No Exposure
Exclusion for Industrial Activity

The 1972 amendments to the Federal Water Pollution Control Act, later referred to as the Clean Water Act (CWA), prohibit the discharge of any pollutant to navigable waters of the United States from a point source unless the discharge is authorized by a National Pollutant Discharge Elimination System (NPDES) permit. Efforts to improve water quality under the NPDES program traditionally have focused on reducing pollutants in industrial process wastewater and municipal sewage treatment plant discharges. Over time, it has become evident that more diffuse sources of water pollution, such as stormwater runoff from construction sites, are also significant contributors to water quality problems.

Sediment runoff rates from construction sites are typically 10 to 20 times greater than those from agricultural lands, and 1,000 to 2,000 times greater than those of forest lands. During a short period of time, construction activity can contribute more sediment to streams than can be deposited over several decades, causing physical and biological harm to our Nation's waters.

In 1990, EPA promulgated rules establishing Phase I of the NPDES stormwater program. Phase I addresses, among other discharges, discharges from large construction activities disturbing 5 acres or more of land. Phase II of the NPDES stormwater program covers small construction activities disturbing between 1 and 5 acres. Phase II became final on December 8, 1999 and small construction permit applications were due by March 10, 2003 (specific compliance dates will be set by the NPDES permitting authority in each State). This fact sheet outlines the construction activities covered by Phase I and Phase II, including possible waiver options from Phase II coverage, and the Phase II construction program requirements.

Who Is Covered Under the Phase I Rule?

Sites Five Acres and Greater

The Phase I NPDES stormwater rule identifies eleven categories of industrial activity in the definition of "stormwater discharges associated with industrial activity" that must obtain an NPDES permit. Category (x) of this definition is construction activity, commonly referred to as "large" construction activity. Under category (x), the Phase I rule requires all *operators* of construction activity *disturbing 5 acres or greater of land* to apply for an NPDES stormwater permit. Operators of sites disturbing less than 5 acres are also required to obtain a permit if their activity is part of a "larger common plan of development or sale" with a planned disturbance of 5 acres or greater. "Disturbance" refers to exposed soil resulting from activities such as clearing, grading, and excavating. Construction activities can include road building, construction of residential houses, office buildings, industrial sites, or demolition.

What Is Meant by a "Larger Common Plan of Development or Sale"?

As defined in EPA's NPDES stormwater general permit for construction activity, a "larger common plan of development or sale" means a contiguous area where multiple separate and distinct construction activities are occurring under one plan (e.g., the operator is building on three half-acre lots in a 6-acre development). The "plan" in a common plan of development or sale is broadly defined as any announcement or piece of documentation

(including a sign, public notice or hearing, sales pitch, advertisement, drawing, permit application, zoning request, computer design, etc.) or physical demarcation (including boundary signs, lot stakes, surveyor markings, etc.) indicating that construction activities may occur on a specific plot.

What Is the Definition of an “Operator” of a Construction Site?

As defined in EPA’s stormwater general permit for construction activity, an “operator” is the party or parties that has:

- Operational control of construction project plans and specifications, including the ability to make modifications to those plans and specifications; *or*
- Day-to-day operational control of those activities that are necessary to ensure compliance with a stormwater pollution prevention plan (SWPPP) for the site or other permit conditions (e.g., they are authorized to direct workers at a site to carry out activities required by the SWPPP or comply with other permit conditions).

There may be more than one party at a site performing the tasks related to “operational control” as defined above. Depending on the site and the relationship between the parties (e.g., owner, developer, contractor), there can either be a single party acting as site operator and consequently be responsible for obtaining permit coverage, or there can be two or more operators, all obligated to seek permit coverage. It is important to note that NPDES-authorized States may use a different definition of “operator” than the one above.

How Is the Phase II Construction Rule Related to the Phase I Construction Rule?

In 1992, the Ninth Circuit court remanded for further proceedings portions of EPA’s existing Phase I stormwater regulation related to the category (x) discharges from large construction activity (NRDC v. EPA, 966 F.2d at 1292). EPA responded to the court’s decision by designating under Phase II stormwater discharges from construction activity disturbing less than 5 acres as sources that should be regulated to protect water quality. The Phase II Rule designates these sources as “stormwater discharges associated with *small construction activity*,” rather than as another category under “stormwater associated with *industrial activity*.”

Who Is Covered Under the Phase II Construction Rule?

Sites Between One and Five Acres

The Stormwater Phase II Rule automatically designates, as small construction activity under the NPDES stormwater permitting program, all operators of construction site activities that result in a *land disturbance of equal to or greater than 1 and less than 5 acres*.

Sites Less Than One Acre

Site activities disturbing less than 1 acre are also regulated as small construction activity if they are part of a larger common plan of development or sale with a planned disturbance of equal to or greater than 1 acre and less than 5 acres, or if they are designated by the NPDES permitting authority. The NPDES permitting authority or EPA Region may designate construction activities disturbing less than 1 acre based on the potential for contribution to a violation of a water quality standard or for significant contribution of pollutants to waters of the United States.

Are Waivers Available for Operators of Regulated Construction Activity?

Yes, but only for small, not large, construction activity. Under the Phase II Rule, NPDES permitting authorities have the option of providing a waiver from the requirements to operators of small construction activity who certify to either one of two conditions:

- ① Low predicted rainfall potential (i.e., activity occurs during a negligible rainfall period), where the rainfall erosivity factor (“R” in the Revised Universal Soil Loss Equation [RUSLE]) is less than 5 during the period of construction activity (See Fact Sheet 3.1); *or*
- ② A determination that stormwater controls are not necessary based on either:
 - (A) A “total maximum daily load” (TMDL) that address the pollutant(s) of concern for construction activities; **OR**
 - (B) An equivalent analysis that determines allocations are not needed to protect water quality based on consideration of instream concentrations, expected growth in pollutant concentrations from all sources, and a margin of safety.

Pollutants of concern include sediment or a parameter that addresses sediment (such as total suspended solids, turbidity, or siltation) and any other pollutant that has been identified as a cause of impairment of a receiving waterbody.

The intent of the waiver provision is to waive only those sites that are highly unlikely to have a negative effect on water quality. Therefore, before applying for a waiver, operators of small construction activity are encouraged to consider the potential water quality impacts that may result from their project and to carefully examine such factors as proximity to water resources and sensitivity of receiving waters.

a. What is the Rainfall Erosivity Factor in Waiver ①?

Waiver ① uses the Rainfall Erosivity Factor to determine whether the potential for polluted discharge is low enough to justify a waiver from the requirements. It is one of six variables used by the Revised Universal Soil Loss Equation (RUSLE)—a predictive tool originally used to measure soil loss from agricultural lands at various times of the year on a regional basis—to predict soil loss from construction sites. The Rainfall Erosivity Factor waiver is time-sensitive and is dependent on when during the year a construction activity takes place, how long it lasts, and the expected rainfall and intensity during that time. For information about the rainfall erosivity waiver, see Fact Sheet 3.1. An erosivity calculator for construction sites is available at <http://ei.tamu.edu>.

b. What is a “TMDL” in Waiver ②?

For impaired waters where technology-based controls required by NPDES permits are not achieving State water quality standards, the CWA requires implementation of the TMDL process. The TMDL process establishes the maximum amount of pollutants a waterbody can assimilate before water quality is impaired, then requires that this maximum level not be exceeded.

A TMDL is done for each pollutant that is found to be contributing to the impairment of a waterbody or a segment of a waterbody. To allow a waiver for construction activities, a TMDL would need to address sediment, or a parameter that addresses sediment such as total suspended solids, turbidity, or siltation. Additional TMDLs addressing common pollutants from construction sites such as nitrogen, phosphorus, and oil and grease also may be necessary to ensure water quality protection and allow a waiver from the NPDES stormwater program.

A TMDL assessment determines the source or sources of a pollutant of concern, considers the maximum allowable level of that pollutant for the waterbody, then allocates to each source or category of sources a set level of the pollutant that it is allowed to discharge into the waterbody. Allocations to point sources are called wasteload allocations.

How Would an Operator Qualify for, and Certify to, Waiver ②?

EPA expects that when TMDLs or equivalent analyses are completed, there may be a determination that certain classes of sources, such as small construction activity, would not have to control their contribution of pollutants of concern to the waterbody in order for the waterbody to be in attainment with water quality standards (i.e., these sources were not assigned wasteload allocations). In such a case, to qualify for waiver ②, the operator of the construction site would need to certify that its construction activity will take place, and the stormwater discharges will occur, within the area covered either by the TMDLs or equivalent analysis. A certification form would likely be provided by the NPDES permitting authority for this purpose.

What Does the Phase II Construction Program Require?

The Phase II Final Rule requires operators of Phase II small construction sites, nationally, to obtain an NPDES permit and implement practices to minimize pollutant runoff. It is important to note that, locally, these same sites also may be covered by State, Tribal, or local construction runoff control programs (see Fact Sheets 2.6 and 2.7 for information on the Phase II small MS4's construction program). For the Phase II small construction program, EPA has taken an approach similar to Phase I where the program requirements are not fully defined in the rule but rather in the NPDES permit issued by the NPDES permitting authority.

EPA recommended that the NPDES permitting authorities use their existing Phase I large construction general permits as a guide to developing their Phase II small construction permits. In doing so, the Phase II requirements would be similar to the three general Phase I requirements summarized below.

- Submission of a *Notice of Intent* (NOI) that includes general information and a certification that the activity will not impact endangered or threatened species. This certification is unique to EPA's NOI and is not a requirement of most NPDES-delegated State's NOIs;
- The development and implementation of a *Stormwater Pollution Prevention Plan* (SWPPP) with appropriate BMPs to minimize the discharge of pollutants from the site; and

- Submission of a *Notice of Termination* (NOT) when final stabilization of the site has been achieved as defined in the permit or when another operator has assumed control of the site.

In July 2003, EPA issued a construction general permit that covers both large and small construction activities. This permit, supporting information, and guidance can be found at <http://www.epa.gov/npdes/stormwater/cgp>.

Can the Permitting Authority Reference a Qualifying Erosion and Sediment Control Program in NPDES Construction Permits?

Yes. The Phase II Rule allows the NPDES permitting authority to include in its NPDES permits for large and for small construction activity conditions that incorporate by reference qualifying State, Tribal, or local erosion and sediment control program requirements. A qualifying program must include the following requirements:

- Requirements for construction site operators to implement appropriate erosion and sediment control best management practices;
- Requirements for construction site operators to control waste such as discarded building materials, concrete truck washout, chemicals, litter, and sanitary waste that may cause adverse impacts to water quality;
- Requirements for construction site operators to develop and implement a stormwater pollution prevention plan; and
- Requirements to submit a site plan for review that incorporates consideration of potential water quality impacts.

In addition to the four elements above, a qualifying program for large construction activities must also include any additional requirements necessary to achieve the applicable technology-based standards of “Best Available Technology” (BAT) and “Best Conventional Technology” (BCT) based on the best professional judgment of the permit writer.

Should a State, Tribal, or local program include one or more, but not all, of the elements listed above, the permitting authority can reference the program in the permit, provided it also lists the missing element(s) as a condition in the permit.

What are Some Recommended BMPs for Small Construction Sites?

The approach and BMPs used for controlling pollutants in stormwater discharges from small construction sites may vary from those used for large sites since their characteristics can differ in many ways. For example, operators of small sites may have more limited access to qualified design personnel and technical information. Also, small sites may have less space for installing and maintaining certain BMPs.

As is the case with all construction sites, erosion and sediment control at small construction sites is best accomplished with proper planning, installation, and maintenance of controls. The following practices have shown to be efficient, cost effective, and versatile for small construction site operators to implement. The practices are divided into two categories: non-structural and structural.

Non-Structural BMPs

- Minimizing Disturbance
- Preserving Natural Vegetation
- Good Housekeeping Practices

Structural BMPs

Erosion Controls

- Mulch
- Grass
- Stockpile Covers

Sediment Controls

- Silt Fence
- Inlet Protection
- Check Dams
- Stabilized Construction Entrances
- Sediment Traps

Most erosion and sediment controls require regular maintenance to operate correctly. Accumulated sediments should be removed frequently and materials should be checked periodically for wear. Regular inspections by qualified personnel, which can allow problem areas to be addressed, should be performed after major rain events.

The BMPs listed above as well as additional erosion and sediment control practices for construction activities are described in detail in the National Menu of BMPs for Stormwater Phase II, which can be found at <http://www.epa.gov/npdes/stormwater>.

For Additional Information

Contacts

A. U.S. EPA Office of Wastewater Management

<http://www.epa.gov/npdes/stormwater>

Phone: 202-564-9545

- ☞ Your NPDES Permitting Authority. Most States and Territories are authorized to administer the NPDES Program, except the following, for which EPA is the permitting authority:

Alaska	Guam
District of Columbia	Johnston Atoll
Idaho	Midway and Wake Islands
Massachusetts	Northern Mariana Islands
New Hampshire	Puerto Rico
New Mexico	Trust Territories
American Samoa	

- ☞ A list of names and telephone numbers for each EPA Region and State is located at <http://www.epa.gov/npdes/stormwater> (click on “Contacts”).

- ☞ Your local soil conservation district office. They can provide assistance with RUSLE and other conservation related issues. A list of conservation district contacts is available at <http://www.nacdnet.org/resources/cdsonweb.html>

Reference Documents

EPA's Stormwater Web Site

<http://www.epa.gov/npdes/stormwater>

- Stormwater Phase II Final Rule Fact Sheet Series
- Stormwater Phase II Final Rule (64 FR 68722)
- National Menu of Best Management Practices for Stormwater Phase II
- Measurable Goals Guidance for Phase II Small MS4s
- Stormwater Case Studies
- Construction General Permit and Fact Sheet (68 FR 45817)

<http://www.epa.gov/npdes/stormwater/cgp>

- EPA Stormwater Management for Construction Activities and Best Management Practices : Developing Pollution Prevention Plans Guidance
- And many others

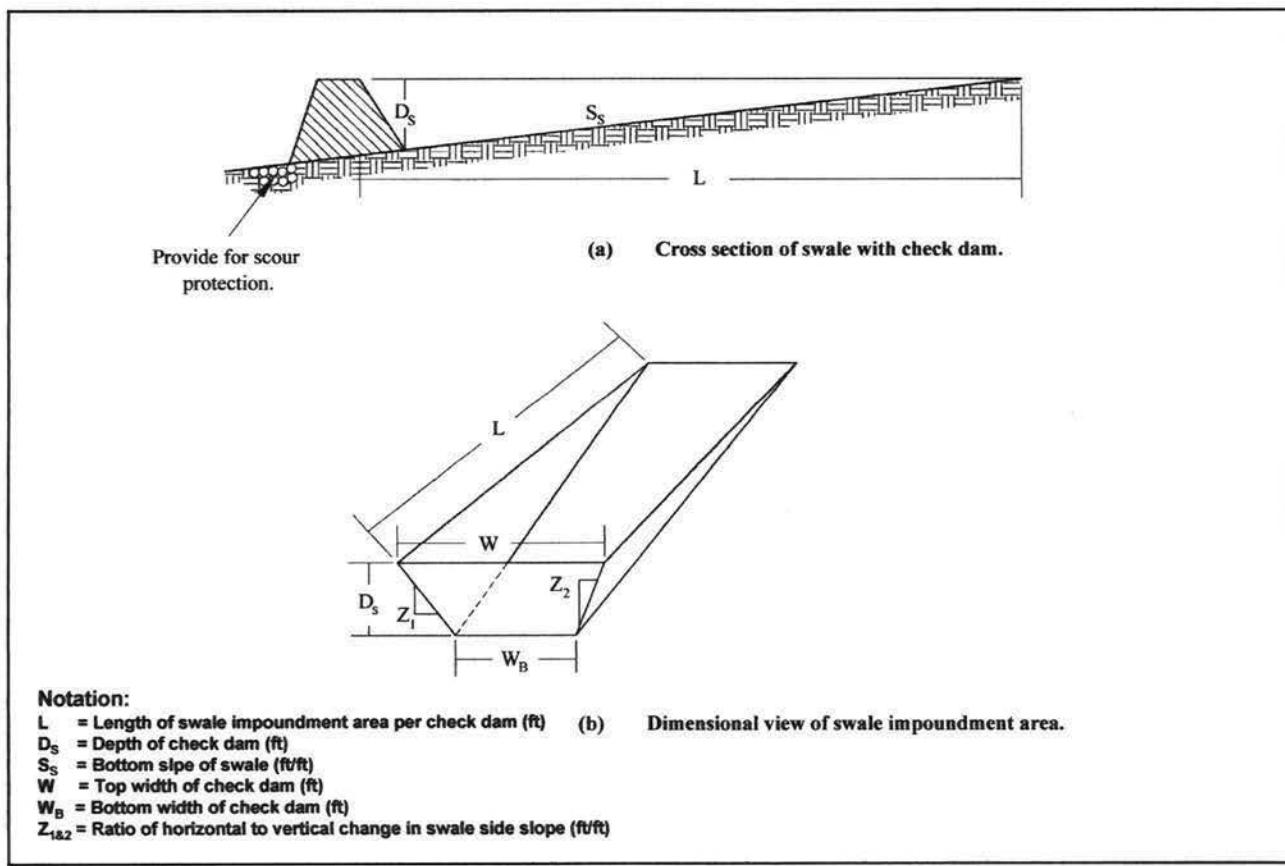
- ☞ Construction Industry Compliance Assistance Center: <http://www.cicacenter.org/>

- ☞ *Agricultural Handbook Number 703, Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Revised Universal Soil Loss Equation (RUSLE)*, Chapter 2, pp. 21-64, January 1997. <http://www.epa.gov/npdes/pubs/ruslech2.pdf>

- ☞ *Guidance for Water Quality Based Decisions: The TMDL Process*. April 1991. U.S. EPA Office of Water. EPA 440/4-91-001. <http://www.epa.gov/OWOW/tmdl>

Storm Water Technology Fact Sheet Vegetated Swales

DESCRIPTION


A vegetated swale is a broad, shallow channel with a dense stand of vegetation covering the side slopes and bottom. Swales can be natural or manmade, and are designed to trap particulate pollutants (suspended solids and trace metals), promote infiltration, and reduce the flow velocity of storm water runoff. A typical design is shown in Figure 1.

Vegetated swales can serve as part of a storm water

drainage system and can replace curbs, gutters and storm sewer systems. Therefore, swales are best suited for residential, industrial, and commercial areas with low flow and smaller populations.

APPLICABILITY

Vegetated swales can be used wherever the local climate and soils permit the establishment and maintenance of a dense vegetative cover. The feasibility of installing a vegetated swale at a

Source: NVPDC, 1996.

FIGURE 1 EXAMPLE OF A VEGETATED SWALE

particular site depends on the area, slope, and perviousness of the contributing watershed, as well as the dimensions, slope, and vegetative covering employed in the swale system.

Vegetated swales are easy to design and can be incorporated into a site drainage plan. While swales are generally used as a stand-alone storm water Best Management Practice (BMP), they are most effective when used in conjunction with other BMPs, such as wet ponds, infiltration strips, wetlands, etc.

While vegetated swales have been widely used as storm water BMPs, there are also certain aspects of vegetated swales that have yet to be quantified. Some of the issues being investigated are whether their pollutant removal rates decline with age, what effect the slope has on the filtration capacity of vegetation, the benefits of check dams, and the degree to which design factors can enhance the effectiveness of pollutant removal.

ADVANTAGES AND DISADVANTAGES

Swales typically have several advantages over conventional storm water management practice, such as storm sewer systems, including the reduction of peak flows; the removal of pollutants, the promotion of runoff infiltration, and lower capital costs. However, vegetated swales are typically ineffective in, and vulnerable to, large storms, because high-velocity flows can erode the vegetated cover.

Limitations of vegetated swales include the following:

- Land may not be available for them.
- In some places, their use is restricted by law: many local municipalities prohibit vegetated swales if peak discharges exceed 140 liters per second (five cubic feet per second) or if flow velocities are greater than 1 meter per second (three feet per second).
- They are impractical in areas with erosive soils or where a dense vegetative cover is difficult to maintain.

Negative environmental impacts of vegetated swales may include:

- Leaching from swale vegetation may increase the presence of trace metals and nutrients in the runoff.
- Infiltration through the swale may carry pollutants into local groundwater.
- Standing water in vegetated swales can result in potential safety, odor, and mosquito problems.

DESIGN CRITERIA

Design criteria for implementation of the vegetated swales are as follows:

Location

Vegetated swales are typically located along property boundaries along a natural grade, although they can be used effectively wherever the site provides adequate space. Swales can be used in place of curbs and gutters along parking lots.

Soil Requirements

Vegetated swales should not be constructed in gravelly and coarse sandy soils that cannot easily support dense vegetation. If available, alkaline soils and subsoils should be used to promote the removal and retention of metals. Soil infiltration rates should be greater than 0.2 millimeters per second (one-half inch per hour); therefore, care

- They are impractical in areas with very flat grades, steep topography, or wet or poorly drained soils.
- They are not effective and may even erode when flow volumes and/or velocities are high.
- They can become drowning hazards, mosquito breeding areas, and may emit odors.

must be taken to avoid compacting the soil during construction.

Vegetation

A fine, close-growing, water-resistant grass should be selected for use in vegetated swales, because increasing the surface area of the vegetation exposed to the runoff improves the effectiveness of the swale system. Pollutant removal efficiencies vary greatly depending on the specific plants involved, so the vegetation should be selected with pollution control objectives in mind. In addition, care should be taken to choose plants that will be able to thrive at the site. Examples of vegetation appropriate for swales include reed canary grass, grass-legume mixtures, and red fescue.

General Channel Configuration

A parabolic or trapezoidal cross-section with side slopes no steeper than 1:3 is recommended to maximize the wetted channel perimeter of the swale. Recommendations for longitudinal channel slopes vary within the existing literature. For example, Schueler (1987) recommends a vegetated swale slope as close to zero as drainage permits. The Minnesota Pollution Control Agency (1991) recommends that the channel slope be less than 2 percent. The Storm Water Management Manual for the Puget Sound Basin (1992) specifies channel slopes between 2 and 4 percent. This manual indicates that slopes of less than 2 percent can be used if drain tile is incorporated into the design, while slopes greater than 4 percent can be used if check dams are placed in the channel to reduce flow velocity.

Flows

A typical design storm used for sizing swales is a six-month frequency, 24-hour storm event. The exact intensity of this storm must be determined for your location and is generally available from the U.S. Geological Survey. Swales are generally not used where the maximum flow rate exceeds 140 liters/second (5 cubic feet per second).

Sizing Procedures

The width of the swale can be calculated using various forms of the Manning equation. However, this methodology can be simplified to the following rule of thumb: the total surface area of the swale should be one percent of the area (500 square feet for each acre) that drains to the swale.

Unless a bypass is provided, the swale must be sized both to treat the design flows and to pass the peak hydraulic flows. However, for the swale to treat runoff most effectively, the depth of the storm water should not exceed the height of the grass.

Construction

The subsurface of the swale should be carefully constructed to avoid compaction of the soil. Compacted soil reduces infiltration and inhibits growth of the grass. Damaged areas should be restored immediately to ensure that the desired level of treatment is maintained and to prevent further damage from erosion of exposed soil.

Check Dams

Check dams can be installed in swales to promote additional infiltration, to increase storage, and to reduce flow velocities. Earthen check dams are not recommended because of their potential to erode. Check dams should be installed every 17 meters (50 feet) if the longitudinal slope exceeds 4 percent.

PERFORMANCE

The literature suggests that vegetated swales represent a practical and potentially effective technique for controlling urban runoff quality. While limited quantitative performance data exists for vegetated swales, it is known that check dams, slight slopes, permeable soils, dense grass cover, increased contact time, and small storm events all contribute to successful pollutant removal by the swale system. Factors decreasing the effectiveness of swales include compacted soils, short runoff contact time, large storm events, frozen ground, short grass heights, steep slopes, and high runoff velocities and discharge rates.

Conventional vegetated swale designs have achieved mixed results in removing particulate pollutants. A study performed by the Nationwide Urban Runoff Program (NURP) monitored three grass swales in the Washington, D.C., area and found no significant improvement in urban runoff quality for the pollutants analyzed. However, the weak performance of these swales was attributed to the high flow velocities in the swales, soil compaction, steep slopes, and short grass height. Another project in Durham, NC, monitored the performance of a carefully designed artificial swale that received runoff from a commercial parking lot. The project tracked 11 storms and concluded that particulate concentrations of heavy metals (Cu, Pb, Zn, and Cd) were reduced by approximately 50 percent. However, the swale proved largely ineffective for removing soluble nutrients. A conservative estimate would say that a properly designed vegetated swale may achieve a 25 to 50 percent reduction in particulate pollutants, including sediment and sediment-attached phosphorus, metals, and bacteria. Lower removal rates (less than 10 percent) can be expected for dissolved pollutants, such as soluble phosphorus, nitrate, and chloride. Table 1 summarizes some pollutant removal efficiencies for vegetated swales.

The effectiveness of vegetated swales can be enhanced by adding check dams at approximately 17 meter (50 foot) increments along their length (See Figure 1). These dams maximize the retention time within the swale, decrease flow velocities, and promote particulate settling. Structures to skim off floating debris may also be added to the swales. Finally, the incorporation of vegetated filter strips parallel to the top of the channel banks can help to treat sheet flows entering the swale.

OPERATION AND MAINTENANCE

The useful life of a vegetated swale system is directly proportional to its maintenance frequency. If properly designed and regularly maintained, vegetated swales can last indefinitely.

The maintenance objectives for vegetated swale systems include keeping up the hydraulic and removal efficiency of the channel and maintaining a dense, healthy grass cover. Maintenance activities

TABLE 1 EFFECTIVENESS OF DESIGN SWALES

Pollutant	Median % Removal
Total Suspended Solids	81
Oxygen Demanding Substances	67
Nitrate	38
Total Phosphorus	9
Hydrocarbons	62
Cadmium	42
Copper	51
Lead	67
Zinc	71

should include periodic mowing (with grass never cut shorter than the design flow depth), weed control, watering during drought conditions, reseeding of bare areas, and clearing of debris and blockages. Cuttings should be removed from the channel and disposed in a local composting facility. Accumulated sediment should also be removed manually to avoid the transport of resuspended sediments in periods of low flow and to prevent a damming effect from sand bars. The application of fertilizers and pesticides should be minimal.

Another aspect of a good maintenance plan is repairing damaged areas within a channel. For example, if the channel develops ruts or holes, it should be repaired utilizing a suitable soil that is properly tamped and seeded. The grass cover should be thick; if it is not, reseed as necessary.

Any standing water removed during the maintenance operation must be disposed to a sanitary sewer at an approved discharge location. Residuals (e.g., silt, grass cuttings) must be disposed in accordance with local or State requirements.

COSTS

Vegetated swales typically cost less to construct than curbs and gutters or underground storm

sewers. Schueler (1987) reported that costs may vary from \$16-\$30 per linear meter (\$4.90 to \$9.00 per linear foot) for a 4.5 meter (15-foot) wide channel (top width).

The Southeastern Wisconsin Regional Planning Commission (SEWRPC, 1991) reported that costs may vary from \$28 to \$164 per linear meter (\$8.50 to \$50.00 per linear foot) depending upon swale depth and bottom width. These cost estimates are higher than other published estimates because they include the cost of activities (such as clearing, grubbing, leveling, filling, and sodding) that may not be included in other published estimates. Construction costs depend on specific site considerations and local costs for labor and materials. Table 2 shows the estimated capital costs of a vegetated swale.

Annual costs for maintaining vegetated swales are approximately \$1.90 per linear meter (\$0.58 per linear foot) for a 0.5 meter (1.5-foot) deep channel, according to SEWRPC (1991). Average annual operating and maintenance costs of vegetated swales can be estimated using Table 3.

REFERENCES

1. Minnesota Pollution Control Agency. 1991. *Protecting Water Quality in Urban Areas*.
2. Schueler, T. R., 1987. Controlling Urban Runoff. *A Practical Manual for Planning and Designing Urban BMPs*.
3. Southeastern Wisconsin Regional Planning Commission, 1991. *Cost of Urban Nonpoint Source Water Pollution Control Measures, Technical Report No. 31*.
4. U.S. EPA, 1983. *Results of the Nationwide Urban Runoff Program*. NTIS PD# 84-18-5545.
5. U.S. EPA, 1991. *A Current Assessment of Best Management Practices: Techniques for Reducing Nonpoint Source Pollution in the Coastal Zone*.

6. U.S. EPA, 1992. *Storm Water Management for Industrial Activities: Developing Pollution Prevention Plans and Best Management Practices*. EPA 832-R92-006, U.S. EPA, Washington, D.C.
7. Washington State Department of Ecology. February, 1992. *Storm Water Manual for the Puget Sound Basin*.

ADDITIONAL INFORMATION

Center for Watershed Protection

Tom Schueler
8391 Main Street
Ellicott City, MD 21043

City of Durham, North Carolina

Paul Wiebke
Storm Water Department
101 City Hall Plaza
Durham, NC 27701

State of Minnesota

Lou Flynn
Minnesota Pollution Control Agency
520 Lafayette Road North
St. Paul, MN 55155

State of Oregon

Dennis Jurries
Oregon Department of Environmental Quality, Northwest Region
2020 Southwest 4th Avenue, Suite 400
Portland, OR 97201

Southeastern Wisconsin Regional Planning Commission
Bob Biebel
916 N. East Avenue, P.O. Box 1607
Waukesha, WI 53187

Washington State Department of Ecology
Stan Ciuba
Stormwater Unit
P.O. Box 47696
Olympia, WA 98504

TABLE 2 ESTIMATED CAPITAL COST OF A 1.5- FOOT DEEP, 10-FOOT-WIDE GRASSED SWALES^a

Component	Unit	Extent	Unit Cost			Total Cost		
			Low	Moderate	High	Low	Moderate	High
Mobilization / Demobilization-Light	Swale	1	\$107	\$274	\$441	\$107	\$274	\$441
Site Preparation								
Clearing ^b	Acre	0.5	\$2,200	\$3,800	\$5,400	\$1,100	\$1,900	\$2,700
Grubbing ^c	Acre	0.25	\$3,800	\$5,200	\$6,600	\$950	\$1,300	\$1,650
General Excavation ^d	Yd ³	372	\$2.10	\$3.70	\$5.30	\$781	\$1,376	\$1,972
Level and Till ^e	Yd ²	1,210	\$0.20	\$0.35	\$0.50	\$242	\$424	\$605
Sites Development								
Salvaged Topsoil Seed, and Mulch ^f ..	Yd ²	1,210	\$0.40	\$1.00	\$1.60	\$484	\$1,210	\$1,936
Sod ^g	Yd ²	1,210	\$1.20	\$2.40	\$3.60	\$1,452	\$2,904	\$4,356
Subtotal	--	--	--	--	--	\$5,116	\$9,388	\$13,660
Contingencies	Swale	1	25%	25%	25%	\$1,279	\$2,347	\$3,415
Total	--	--	--	--	--	\$6,395	\$11,735	\$17,075

Source: (SEWRPC, 1991)

Note: Mobilization/demobilization refers to the organization and planning involved in establishing a vegetative swale.

^a Swale has a bottom width of 1.0 foot, a top width of 10 feet with 1:3 side slopes, and a 1,000-foot length.

^b Area cleared = (top width + 10 feet) x swale length.

^c Area grubbed = (top width x swale length).

^d Volume excavated = (0.67 x top width x swale depth) x swale length (parabolic cross-section).

^e Area tilled = (top width + $\frac{8(\text{swale depth}^2)}{3(\text{top width})}$) x swale length (parabolic cross-section).

^f Area seeded = area cleared x 0.5.

^g Area sodded = area cleared x 0.5.

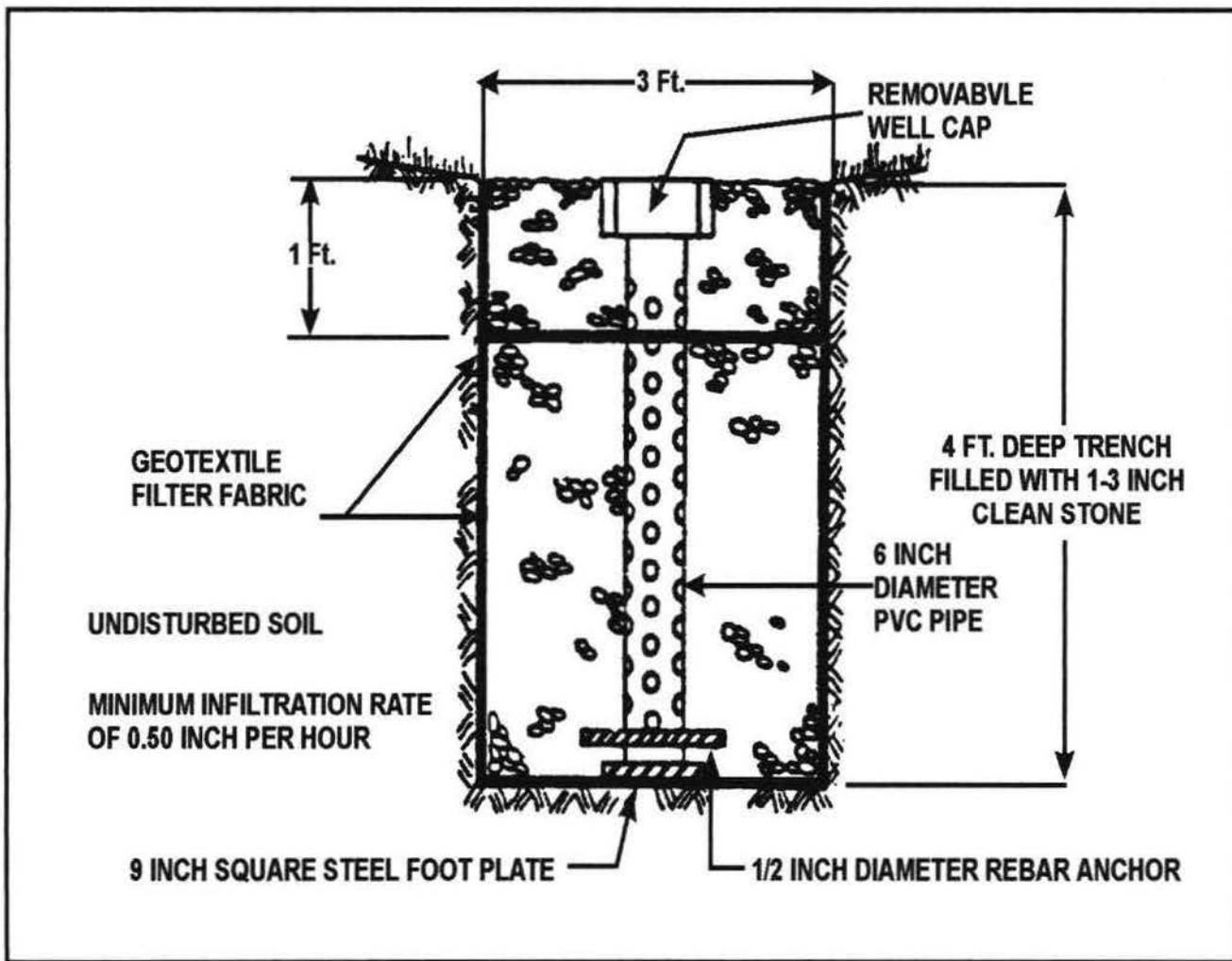
TABLE 3 ESTIMATED OPERATION AND MAINTENANCE COSTS

Component	Unit Cost	Swale Size (Depth and Top Width)		Comment
		1.5 Foot Depth, One-Foot Bottom Width, 10-Foot Top Width	3-Foot Depth, 3-Foot Bottom Width, 21-Foot Top Width	
Lawn Mowing	\$0.85 / 1,000 ft ² / mowing	\$0.14 / linear foot	\$0.21 / linear foot	Lawn maintenance area=(top width + 10 feet) x length. Mow eight times per year
General Lawn Care	\$9.00 / 1,000 ft ² / year	\$0.18 / linear foot	\$0.28 / linear foot	Lawn maintenance area = (top width + 10 feet) x length
Swale Debris and Litter Removal	\$0.10 / linear foot / year	\$0.10 / linear foot	\$0.10 / linear foot	--
Grass Reseeding with Mulch and Fertilizer	\$0.30 / yd ²	\$0.01 / linear foot	\$0.01 / linear foot	Area revegetated equals 1% of lawn maintenance area per year
Program Administration and Swale Inspection	\$0.15 / linear foot / year, plus \$25 / inspection	\$0.15 / linear foot	\$0.15 / linear foot	Inspect four times per year
Total	--	\$0.58 / linear foot	\$ 0.75 / linear foot	--

Source: SEWPRC, 1991.

The mention of trade names or commercial products does not constitute endorsement or recommendation for the use by the U.S. Environmental Protection Agency.

For more information contact:


Municipal Technology Branch
U.S. EPA
Mail Code 4204
401 M St., S.W.
Washington, DC, 20460

Storm Water Technology Fact Sheet Infiltration Trench

DESCRIPTION

Urban development is significantly increasing surface runoff and contamination of local watersheds. As a result, infiltration practices, such as infiltration trenches, are being employed to remove suspended solids, particulate pollutants,

coliform bacteria, organics, and some soluble forms of metals and nutrients from storm water runoff. As shown in Figure 1, an infiltration trench is an excavated trench, 0.9 to 3.7 meters (3 to 12 feet) deep, backfilled with a stone aggregate, and lined with filter fabric. A small portion of the runoff, usually the first flush, is diverted to the infiltration

Source: Southeastern Wisconsin Regional Planning Commission, 1991.

FIGURE 1 TYPICAL INFILTRATION TRENCH

trench, which is located either underground or at grade. Pollutants are filtered out of the runoff as it infiltrates the surrounding soils. Infiltration trenches also provide groundwater recharge and preserve baseflow in nearby streams.

APPLICABILITY

Infiltration trenches are often used in place of other Best Management Practices where limited land is available. Infiltration trenches are most widely used in warmer, less arid regions of the U.S. However, recent studies conducted in Maryland and New Jersey on trench performance and operation and maintenance have demonstrated the applicability of infiltration trenches in colder climates if surface icing is avoided (Lindsey, et al, 1991).

Infiltration trenches capture and treat small amounts of runoff, but do not control peak hydraulic flows. Infiltration trenches may be used in conjunction with another Best Management Practice (BMP), such as a detention pond, to provide both water quality control and peak flow control (Harrington, 1989). Figure 2 is an example of such a combined technology. This type of infiltration trench has a concentrated input, as opposed to dispersed input (as shown in Figure 1). This system stores the entire storm water volume with the water quality (BMP) volume connected to the infiltration system. This is commonly achieved with a slow release of the storm water management volume through an orifice set at a specified level in the storage facility. As a result the BMP water quality volume will equal the storm water detention area below the orifice level which must infiltrate to exit.

Runoff that contains high levels of sediments or hydrocarbons (oil and grease) that may clog the trench are often pretreated with other BMPs. Examples of some pretreatment BMPs include grit chambers, water quality inlets, sediment traps, swales, and vegetated filter strips (SEWRPC, 1991, Harrington, 1989).

ADVANTAGES AND DISADVANTAGES

Infiltration trenches provide efficient removal of suspended solids, particulate pollutants, coliform bacteria, organics and some soluble forms of metals and nutrients from storm water runoff. The captured runoff infiltrates the surrounding soils and increases groundwater recharge and baseflow in nearby streams.

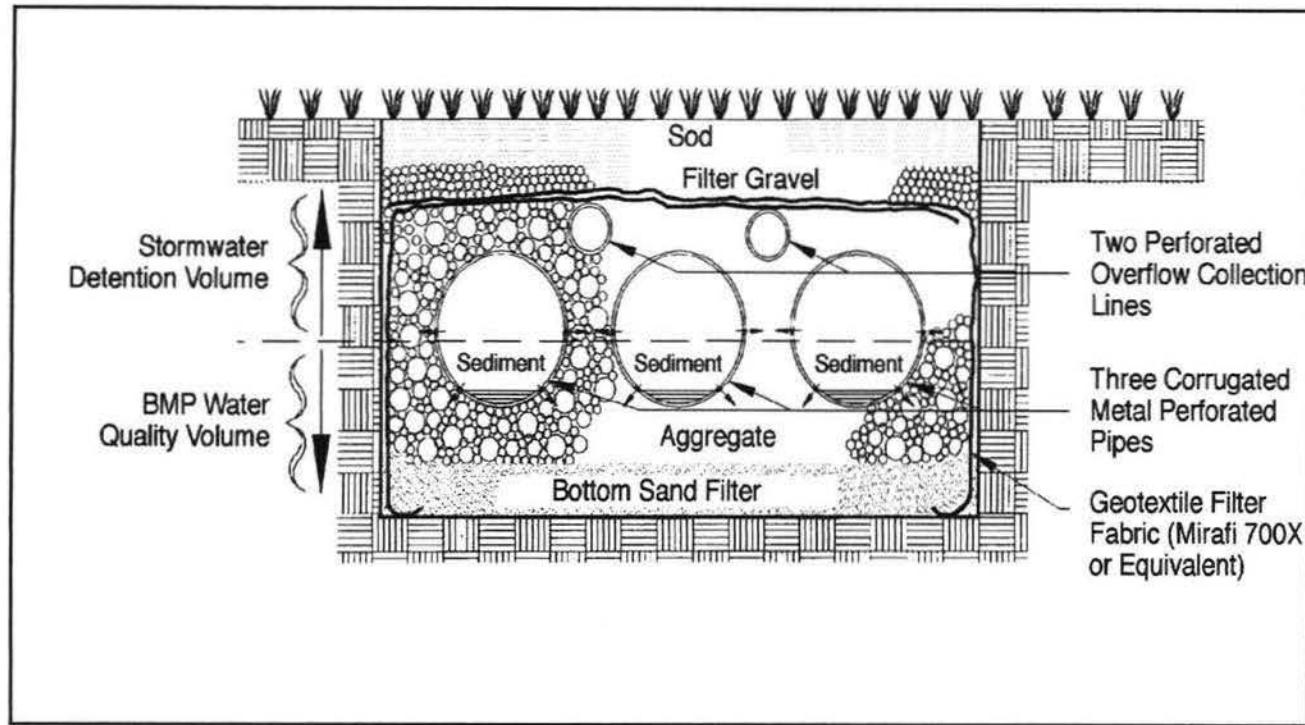
Negative impacts include the potential for groundwater contamination and a high likelihood of early failure if not properly maintained.

As with any infiltration BMP, the potential for groundwater contamination must be carefully considered, especially if the groundwater is used for human consumption or agricultural purposes. The infiltration trench is not suitable for sites that use or store chemicals or hazardous materials unless hazardous and toxic materials are prevented from entering the trench. In these areas, other BMPs that do not interact with the groundwater should be considered. The potential for spills can be minimized by aggressive pollution prevention measures. Many municipalities and industries have developed comprehensive spill prevention control and countermeasure (SPCC) plans. These plans should be modified to include the infiltration trench and the contributing drainage area. For example, diversion structures can be used to prevent spills from entering the infiltration trench.

Because of the potential to contaminate groundwater, extensive site investigation must be undertaken early in the site planning process to establish site suitability for the installation of an infiltration trench. The use of infiltration trenches may be limited by a number of factors, including type of native soils, climate, and location of groundwater tables. Site characteristics, such as excessive slope of the drainage area, fine-particled soil types, and proximate location of the water table and bedrock, may preclude the use of infiltration trenches. The slope of the surrounding area should be such that the runoff is evenly distributed in sheet flow as it enters the trench unless specifically designed for concentrated input. Generally, infiltration trenches are not suitable for areas with relatively impermeable soils containing clay and silt

or in areas with fill. The trench should be located well above the water table so that the runoff can filter through the trench and into the surrounding soils and eventually into the groundwater. In addition, the drainage area should not convey heavy levels of sediments or hydrocarbons to the trench. For this reason, trenches serving parking lots must be preceded by appropriate pretreatment such as an oil-grit separator. This measure will make effective maintenance feasible. Generally, trenches that are constructed under parking lots must provide access for maintenance.

An additional limitation on use of infiltration trenches is the climate. In cold climates, the trench surface may freeze, thereby preventing the runoff from entering the trench and allowing the untreated runoff to enter surface water. The surrounding soils may also freeze, reducing infiltration into the soils and groundwater. However, recent studies indicate that if properly designed and maintained, infiltration trenches can operate effectively in colder climates. By keeping the trench surface free of compacted snow and ice, and by ensuring that part of the trench is constructed below the frost line, the performance of the infiltration trench during cold weather will be greatly improved.


Finally, there have been a number of concerns raised about the long term effectiveness of infiltration trench systems. In the past, infiltration trenches have demonstrated a relatively short life span, with over 50 percent of the systems checked having partially or completely failed after 5 years. A recent study of infiltration trenches in Maryland (Lindsey et al., 1991) found that 53 percent were not operating as designed, 36 percent were partially or totally clogged, and another 22 percent exhibited slow filtration. Longevity can be increased by careful geotechnical evaluation prior to construction and by designing and implementing an inspection and maintenance plan. Soil infiltration rates and the water table depth should be evaluated to ensure that conditions are satisfactory for proper operation of an infiltration trench. Pretreatment structures, such as a vegetated buffer strip or water quality inlet, can increase longevity by removing sediments, hydrocarbons, and other materials that may clog the trench. Regular maintenance, including the

replacement of clogged aggregate, will also increase the effectiveness and life of the trench.

DESIGN CRITERIA

Prior to trench construction, a review of the design plans may be required by state and local governments. The design plans should include a geotechnical evaluation that determines the feasibility of using an infiltration trench at the site. Soils should have a low silt and clay content and have infiltration rates greater than 1.3 centimeters (0.5 inches) per hour. Acceptable soil texture classes include sand, loamy sand, sandy loam and loam. These soils are within the A or B hydrologic group. Soils in the C or D hydrologic groups should be avoided. Soil survey reports published by the Soil Conservation Service can be used to identify soil types and infiltration rates. However, sufficient soil borings should always be taken to verify site conditions. Feasible sites should have a minimum of 1.2 meters (4 feet) to bedrock in order to reduce excavation costs. There should also be at least 1.2 meters (4 feet) below the trench to the water table to prevent potential ground water problems. Trenches should also be located at least 30.5 meters (100 feet) upgradient from water supply wells and 30.5 meters (100 feet) from building foundations. Land availability, the depth to bedrock, and the depth to the water table will determine whether the infiltration trench is located underground or at grade. Underground trenches receive runoff through pipes or channels, whereas surface trenches collect sheet flow from the drainage area.

In general, infiltration trenches are suitable for drainage areas up to 4 hectares (10 acres) (SEWRPC, 1991, Harrington, 1989). However, when the drainage area exceeds 2 hectares (5 acres), other BMPs should be carefully considered. The drainage area must be fully developed and stabilized with vegetation before constructing an infiltration trench. High sediment loads from unstabilized areas will quickly clog the infiltration trench. Runoff from unstabilized areas should be diverted away from the trench into a construction BMP until vegetation is established.

Source: Fairfax County Soils Office, 1991.

FIGURE 2 INFILTRATION TRENCH WITH CONCENTRATED INPUT AND AUGMENTED PIPE STORAGE

The drainage area slope determines the velocity of the runoff and also influences the amount of pollutants entrained in the runoff. Infiltration trenches work best when the upgradient drainage area slope is less than 5 percent (SEWRPC, 1991). The downgradient slope should be no greater than 20 percent to minimize slope failure and seepage.

The trench surface may consist of stone or vegetation with inlets to evenly distribute the runoff entering the trench (SEWRPC, 1991, Harrington, 1989). Runoff can be captured by depressing the trench surface or by placing a berm at the down gradient side of the trench.

The basic infiltration trench design utilizes stone aggregate in the top of the trench to promote filtration; however, this design can be modified by substituting pea gravel for stone aggregate in the top 0.3 meter (1 foot) of the trench. The pea gravel improves sediment filtering and maximizes the pollutant removal in the top of the trench. When the modified trenches become clogged, they can generally be restored to full performance by removing and replacing only the pea gravel layer, without replacing the lower stone aggregate layers.

Infiltration trenches can also be modified by adding a layer of organic material (peat) or loam to the trench subsoil. This modification appears to enhance the removal of metals and nutrients through adsorption. The trenches are then covered with an impermeable geotextile membrane overlain with topsoil and grass (Figure 2).

A vegetated buffer strip (6.1 to 7.6 meters, or 20-25 feet, wide) should be established adjacent to the infiltration trench to capture large sediment particles in the runoff. The buffer strip should be installed immediately after trench construction using sod instead of hydroseeding (Schueler, 1987). The buffer strip should be graded with a slope between 0.5 and 15 percent so that runoff enters the trench as sheet flow. If runoff is piped or channeled to the trench, a level spreader must be installed to create sheet flow (Harrington, 1989).

During excavation and trench construction, only light equipment such as backhoes or wheel and ladder type trenchers should be used to minimize compaction of the surrounding soils. Filter fabric should be placed around the walls and bottom of the trench and 0.3 meters (1 foot) below the trench

surface. The filter fabric should overlap each side of the trench in order to cover the top of the stone aggregate layer (see Figure 1). The filter fabric prevents sediment in the runoff and soil particles from the sides of the trench from clogging the aggregate. Filter fabric that is placed 0.3 meters (1 foot) below the trench surface will maximize pollutant removal within the top layer of the trench and decrease the pollutant loading to the trench bottom, reducing frequency of maintenance.

The required trench volume can be determined by several methods. One method calculates the volume based on capture of the first flush, which is defined as the first 1.3 centimeters (0.5 inches) of runoff from the contributing drainage area (SEWRPC, 1991). The State of Maryland (MD., 1986) also recommends sizing the trench based on the first flush, but defines first flush as the first 1.3 centimeters (0.5 inches) from the contributing impervious area. The Metropolitan Washington Council of Governments (MWCOG) suggests that the trench volume be based on the first 1.3 centimeters (0.5 inches) per impervious acre or the runoff produced from a 6.4 centimeter (2.5 inch) storm. In Washington D.C., the capture of 1.3 centimeters (0.5 inches) per impervious acre accounts for 40 to 50 percent of the annual storm runoff volume. The runoff not captured by the infiltration trench should be bypassed to another BMP (Harrington, 1989) if treatment of the entire runoff from the site is desired.

Trench depths are usually between 0.9 and 3.7 meters (3 and 12 feet) (SEWRPC, 1991, Harrington, 1989). However, a depth of 2.4 meters (8 feet) is most commonly used (Schueler, 1987). A site specific trench depth can be calculated based on the soil infiltration rate, aggregate void space, and the trench storage time (Harrington, 1989). The stone aggregate used in the trench is normally 2.5 to 7.6 centimeters (1 to 3 inches) in diameter, which provides a void space of 40 percent (SEWRPC, 1991, Harrington, 1989, Schueler, 1987).

A minimum drainage time of 6 hours should be provided to ensure satisfactory pollutant removal in the infiltration trench (Schueler, 1987, SEWRPC, 1991). Although trenches may be designed to

provide temporary storage of storm water, the trench should drain prior to the next storm event. The drainage time will vary by precipitation zone. In the Washington, D.C. area, infiltration trenches are designed to drain within 72 hours.

An observation well is recommended to monitor water levels in the trench. The well can be a 10.2 to 15.2 centimeter (4 to 6 inch) diameter PVC pipe, which is anchored vertically to a foot plate at the bottom of the trench as shown in Figure 1 above. Inadequate drainage may indicate the need for maintenance.

PERFORMANCE

Infiltration trenches function similarly to rapid infiltration systems that are used in wastewater treatment. Estimated pollutant removal efficiencies from wastewater treatment performance and modeling studies are shown in Table 1.

Based on this data, infiltration trenches can be expected to remove up to 90 percent of sediments, metals, coliform bacteria and organic matter, and up to 60 percent of phosphorus and nitrogen in the runoff (Schueler, 1992). Biochemical oxygen demand (BOD) removal is estimated to be between 70 to 80 percent. Lower removal rates for nitrate, chlorides and soluble metals should be expected,

TABLE 1 TYPICAL POLLUTANT REMOVAL EFFICIENCY

Pollutant	Typical Percent Removal Rates
Sediment	90%
Total Phosphorous	60%
Total Nitrogen	60%
Metals	90%
Bacteria	90%
Organics	90%
Biochemical Oxygen Demand	70-80%

Source: Schueler, 1992.

especially in sandy soils (Schueler, 1992).

Pollutant removal efficiencies may be improved by using washed aggregate and adding organic matter and loam to the subsoil. The stone aggregate should be washed to remove dirt and fines before placement in the trench. The addition of organic material and loam to the trench subsoil will enhance metals and nutrient removal through adsorption.

OPERATION AND MAINTENANCE

Infiltration, as with all BMPs, must have routine inspection and maintenance designed into the life performance of the facility. Maintenance should be performed as indicated by these routine inspections. The principal maintenance objective is to prevent clogging, which may lead to trench failure. Infiltration trenches and any pretreatment BMPs should be inspected after large storm events and any accumulated debris or material removed. A more thorough inspection of the trench should be conducted at least annually. Annual inspection should include monitoring of the observation well to confirm that the trench is draining within the specified time. Trenches with filter fabric should be inspected for sediment deposits by removing a small section of the top layer. If inspection indicates that the trench is partially or completely clogged, it should be restored to its design condition.

When vegetated buffer strips are used, they should be inspected for erosion or other damage after each major storm event. The vegetated buffer strip should have healthy grass that is routinely mowed. Trash, grass clippings and other debris should be removed from the trench perimeter and should be disposed properly. Trees and other large vegetation adjacent to the trench should also be removed to prevent damage to the trench.

COSTS

Construction costs include clearing, excavation, placement of the filter fabric and stone, installation of the monitoring well, and establishment of a vegetated buffer strip. Additional costs include planning, geotechnical evaluation, engineering and permitting. The Southeastern Wisconsin Regional Planning Commission (SEWRPC, 1991) has

developed cost curves and tables for infiltration trenches based on 1989 dollars. The 1993 construction cost for a relatively large infiltration trench (i.e., 1.8 meters (6 feet) deep and 1.2 meters (4 feet) wide with a 68 cubic meter (2,400 cubic feet) volume) ranges from \$8,000 to \$19,000. A smaller infiltration trench (i.e., 0.9 meters (3 feet) deep and 1.2 meters (4 feet) wide with a 34 cubic meter (1,200 cubic feet) volume) is estimated to cost from \$3,000 to \$8,500.

Maintenance costs include buffer strip maintenance and trench inspection and rehabilitation. SEWRPC (1991) has also developed maintenance costs for infiltration trenches. Based on the above examples, annual operation and maintenance costs would average \$700 for the large trench and \$325 for the small trench. Typically, annual maintenance costs are approximately 5 to 10 percent of the capital cost (Schueler, 1987). Trench rehabilitation, may be required every 5 to 15 years. Cost for rehabilitation will vary depending on site conditions and the degree of clogging. Estimated rehabilitation costs run from 15 to 20 percent of the original capital cost (SEWRPC, 1991).

REFERENCES

1. Fugill, R., 1991-1992. Fairfax County Soil Science Office. Personal communication with Lauren Fillmore, Parsons Engineering Science, Inc.
2. Harrington, B.W., 1989. *Design and Construction of Infiltration Trenches in Design of Urban Runoff Quality Control*. American Society of Civil Engineers.
3. Lindsey, G., L. Roberts, and W. Page, 1991. *Storm Water Management Infiltration*. Maryland Department of the Environment, Sediment and Storm Water Administration.
4. Maryland Department of Natural Resources, 1986. *Minimum Water Quality Objectives and Planning Guidelines for Infiltration Practices*. Water Resources Administration, Sediment and Storm Water Division.

5. Northern Virginia Planning District Commission (NVPDC) and Engineers and Surveyors Institute, 1992. *Northern Virginia BMP Handbook: A Guide to Planning and Designing Best Management Practices in Northern Virginia*.
6. Schueler, T.R., 1987. *Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban Best Management Practices*. Metropolitan Washington Council of Governments.
7. Schueler, T.R., 1992. *A Current Assessment of Urban Best Management Practices*. Metropolitan Washington Council of Governments.
8. Southeastern Wisconsin Regional Planning Commission (SEWRPC), 1991. *Costs of Urban Nonpoint Source Water Pollution Control Measures*. Technical Report No. 31.
9. U. S. EPA, 1991. *Detention and Retention Effects on Groundwater*, Region V.
10. Washington, State of, 1992. *Storm Water Management Manual for the Puget Sound Basin* (The Technical Manual), Department of Ecology.
- King County, Washington
 Dave Hancock
 Department of Natural Resources, Water and Land Resources Division, Drainage Services Section
 700 5th Avenue, Suite 2200
 Seattle, WA 98104
- Montgomery County, Maryland
 Rick Brush
 Department of Permitting Services, Water Resource Section
 250 Hungerford Drive, Suite 175
 Rockville, MD 20850
- Southeastern Wisconsin Regional Planning Commission
 Bob Biebel
 916 N. East Avenue, P.O. Box 1607
 Waukesha, WI 53187
- The mention of trade names or commercial products does not constitute endorsement or recommendation for the use by the U.S. Environmental Protection Agency.

ADDITIONAL INFORMATION

City of Alexandria, Virginia
 Warren Bell
 Department of Transportation and Environmental Services
 P.O. Box 178
 Alexandria, VA 22313

Carroll County, Maryland
 Martin Covington
 Bureau of Developmental Review
 225 North Center Street
 Westminster, MD 21157-5194

For more information contact:

Municipal Technology Branch
 U.S. EPA
 Mail Code 4204
 401 M St., S.W.
 Washington, D.C., 20460

Storm Water Technology Fact Sheet Porous Pavement

DESCRIPTION

Porous pavement is a special type of pavement that allows rain and snowmelt to pass through it, thereby reducing the runoff from a site and surrounding areas. In addition, porous pavement filters some pollutants from the runoff if maintained.

There are two types of porous pavement: porous asphalt and pervious concrete. Porous asphalt pavement consists of an open-graded coarse aggregate, bonded together by asphalt cement, with sufficient interconnected voids to make it highly permeable to water. Pervious concrete consists of specially formulated mixtures of Portland cement, uniform, open-graded coarse aggregate, and water. Pervious concrete has enough void space to allow rapid percolation of liquids through the pavement.

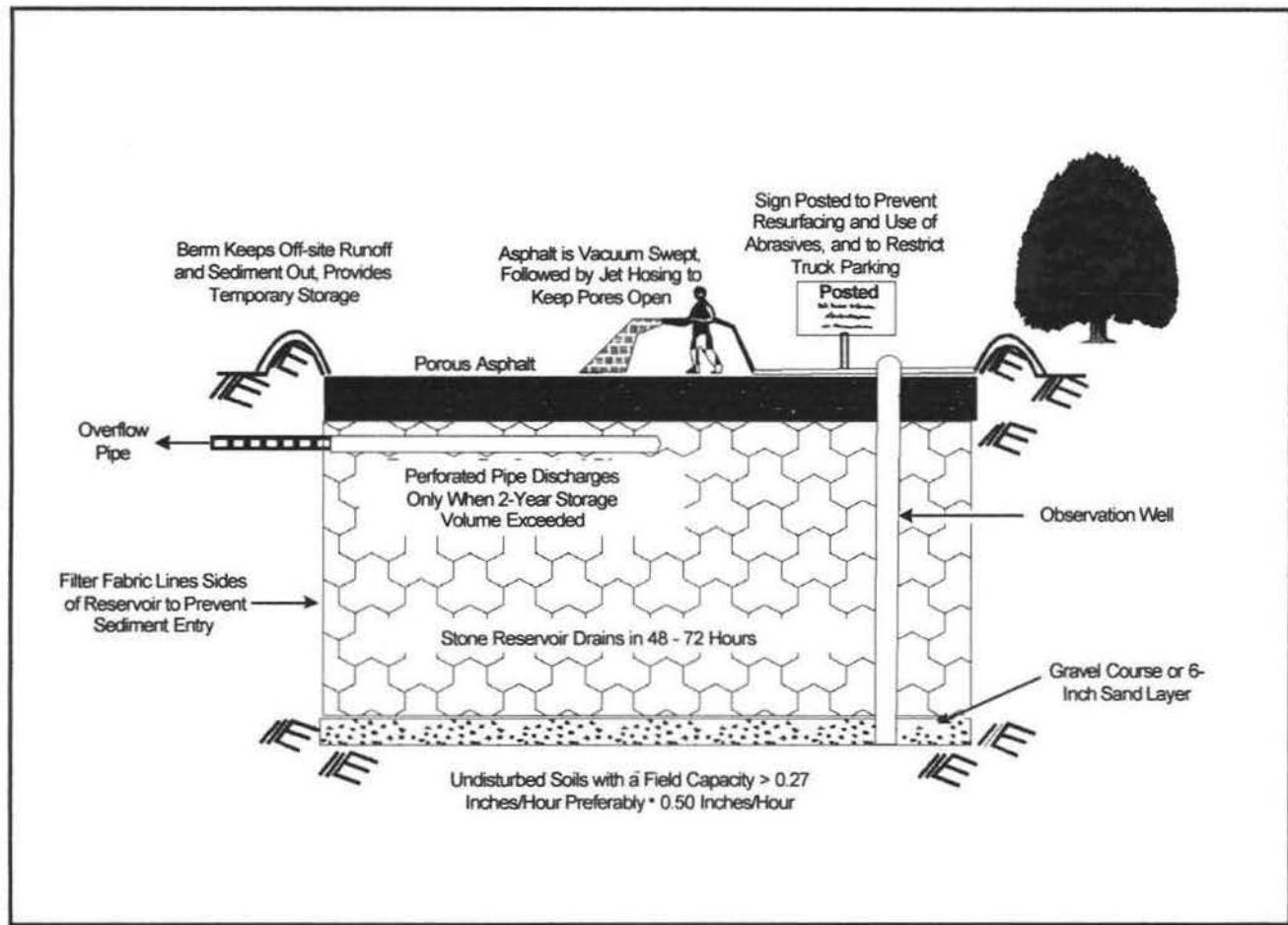
The porous pavement surface is typically placed over a highly permeable layer of open-graded gravel and crushed stone. The void spaces in the aggregate layers act as a storage reservoir for runoff. A filter fabric is placed beneath the gravel and stone layers to screen out fine soil particles. Figure 1 illustrates a common porous asphalt pavement installation.

Two common modifications made in designing porous pavement systems are (1) varying the amount of storage in the stone reservoir beneath the pavement and (2) adding perforated pipes near the top of the reservoir to discharge excess storm water after the reservoir has been filled.

Some municipalities have also added storm water reservoirs (in addition to stone reservoirs) beneath the

pavement. These reservoirs should be designed to accommodate runoff from a design storm and should provide for infiltration through the underlying subsoil.

APPLICABILITY


Porous pavement may substitute for conventional pavement on parking areas, areas with light traffic, and the shoulders of airport taxiways and runways, provided that the grades, subsoils, drainage characteristics, and groundwater conditions are suitable. Slopes should be flat or very gentle. Soils should have field-verified permeability rates of greater than 1.3 centimeters (0.5 inches) per hour, and there should be a 1.2 meter (4-foot) minimum clearance from the bottom of the system to bedrock or the water table.

ADVANTAGES AND DISADVANTAGES

The advantages of using porous pavement include:

- Water treatment by pollutant removal.
- Less need for curbing and storm sewers.
- Improved road safety because of better skid resistance.
- Recharge to local aquifers.

The use of porous pavement may be restricted in cold regions, arid regions or regions with high wind erosion rates, and areas of sole-source aquifers. The use of porous pavement is highly constrained, requiring deep permeable soils, restricted traffic, and adjacent land

Source: Modified from MWCOG, 1987.

FIGURE 1 TYPICAL POROUS PAVEMENT INSTALLATION

uses. Some specific disadvantages of porous pavement include the following:

- Many pavement engineers and contractors lack expertise with this technology.
- Porous pavement has a tendency to become clogged if improperly installed or maintained.
- Porous pavement has a high rate of failure.
- There is some risk of contaminating groundwater, depending on soil conditions and aquifer susceptibility.
- Fuel may leak from vehicles and toxic chemicals may leach from asphalt and/or binder surface. Porous pavement systems are not designed to treat these pollutants.

- Some building codes may not allow for its installation.
- Anaerobic conditions may develop in underlying soils if the soils are unable to dry out between storm events. This may impede microbiological decomposition.

As noted above, the use of porous pavement does create risk of groundwater contamination. Pollutants that are not easily trapped, adsorbed, or reduced, such as nitrates and chlorides, may continue to move through the soil profile and into the groundwater, possibly contaminating drinking water supplies. Therefore, until more scientific data is available, it is not advisable to construct porous pavement near groundwater drinking supplies.

In addition to these documented pros and cons of porous pavements, several questions remain regarding their use. These include:

- Whether porous pavement can maintain its porosity over a long period of time, particularly with resurfacing needs and snow removal.
- Whether porous pavement remains capable of removing pollutants after subfreezing weather and snow removal.
- The cost of maintenance and rehabilitation options for restoration of porosity.

DESIGN CRITERIA

Porous pavement - along with other infiltration technologies like infiltration basins and trenches - have demonstrated a short life span. Failures generally have been attributed to poor design, poor construction techniques, subsoils with low permeability, and lack of adequate preventive maintenance. Key design factors that can increase the performance and reduce the risk of failure of porous pavements (and other infiltration technologies) include:

- Site conditions;
- Construction materials; and
- Installation methods.

These factors are discussed further in Table 1.

PERFORMANCE

Porous pavement pollutant removal mechanisms include absorption, straining, and microbiological decomposition in the soil. An estimate of porous pavement pollutant removal efficiency is provided by two long-term monitoring studies conducted in Rockville, MD, and Prince William, VA. These studies indicate removal efficiencies of between 82 and 95 percent for sediment, 65 percent for total phosphorus, and between 80 and 85 percent of total nitrogen. The Rockville, MD, site also indicated high removal rates for zinc, lead, and chemical oxygen

demand. Some key factors to increase pollutant removal include:

- Routine vacuum sweeping and high pressure washing (with proper disposal of removed material).
- Drainage time of at least 24 hours.
- Highly permeable soils.
- Pretreatment of runoff from site.
- Organic matter in subsoils.
- Clean-washed aggregate.

Traditionally, porous pavement sites have had a high failure rate - approximately 75 percent. Failure has been attributed to poor design, inadequate construction techniques, soils with low permeability, heavy vehicular traffic, and resurfacing with nonporous pavement materials. Factors enhancing longevity include:

- Vacuum sweeping and high-pressure washing.
- Use in low-intensity parking areas.
- Restrictions on use by heavy vehicles.
- Limited use of de-icing chemicals and sand.
- Resurfacing.
- Inspection and enforcement of specifications during construction.
- Pretreatment of runoff from offsite.
- Implementation of a stringent sediment control plan.

OPERATION AND MAINTENANCE

Porous pavements need to be maintained. Maintenance should include vacuum sweeping at least four times a year (with proper disposal of

TABLE 1 DESIGN CRITERIA FOR POROUS PAVEMENTS

Design Criterion	Guidelines
Site Evaluation	<ul style="list-style-type: none">Take soil boring to a depth of at least 1.2 meters (4 feet) below bottom of stone reservoir to check for soil permeability, porosity, depth of seasonally high water table, and depth to bedrock.Not recommended on slopes greater than 5 percent and best with slopes as flat as possible.Minimum infiltration rate 0.9 meters (3 feet) below bottom of stone reservoir: 1.3 centimeters (0.5 inches) per hour.Minimum depth to bedrock and seasonally high water table: 1.2 meters (4 feet).Minimum setback from water supply wells: 30 meters (100 feet).Minimum setback from building foundations: 3 meters (10 feet) downgradient, 30 meters (100 feet) upgradient.Not recommended in areas where wind erosion supplies significant amounts of windblown sediment.Drainage area should be less than 6.1 hectares (15 acres).
Traffic conditions	<ul style="list-style-type: none">Use for low-volume automobile parking areas and lightly used access roads.Avoid moderate to high traffic areas and significant truck traffic.Avoid snow removal operations; post with signs to restrict the use of sand, salt, and other deicing chemicals typically associated with snow cleaning activities.
Design Storm Storage Volume	<ul style="list-style-type: none">Highly variable; depends upon regulatory requirements. Typically design for storm water runoff volume produced in the tributary watershed by the 6-month, 24-hour duration storm event.
Drainage Time for Design Storm	<ul style="list-style-type: none">Minimum: 12 hours.Maximum: 72 hours.Recommended: 24 hours.
Construction	<ul style="list-style-type: none">Excavate and grade with light equipment with tracks or oversized tires to prevent soil compaction.As needed, divert storm water runoff away from planned pavement area before and during construction.A typical porous pavement cross-section consists of the following layers: 1) porous asphalt course, 5-10 centimeters (2-4 inches) thick; 2) filter aggregate course; 3) reservoir course of 4-8 centimeters (1.5-3-inch) diameter stone; and 4) filter fabric.
Porous Pavement Placement	<ul style="list-style-type: none">Paving temperature: 240° - 260° F.Minimum air temperature: 50° F.Compact with one or two passes of a 10,000-kilogram (10-ton) roller.Prevent any vehicular traffic on pavement for at least two days.
Pretreatment	<ul style="list-style-type: none">Pretreatment recommended to treat runoff from off-site areas. For example, place a 7.6-meter (25-foot) wide vegetative filter strip around the perimeter of the porous pavement where drainage flows onto the pavement surface.

removed material), followed by high-pressure hosing to free pores in the top layer from clogging. Potholes and cracks can be filled with patching mixes unless more than 10 percent of the surface area needs repair. Spot-clogging may be fixed by drilling 1.3 centimeter (half-inch) holes through the porous pavement layer every few feet.

The pavement should be inspected several times during the first few months following installation and annually thereafter. Annual inspections should take place after large storms, when puddles will make any clogging obvious. The condition of adjacent pretreatment devices should also be inspected.

COSTS

The costs associated with developing a porous pavement system are illustrated in Table 2.

Estimated costs for an average annual maintenance program of a porous pavement parking lot are approximately \$4,942 per hectare per year (\$200 per acre per year). This cost assumes four inspections each year with appropriate jet hosing and vacuum sweeping treatments.

REFERENCES

1. Field, R., et al., 1982. "An Overview of Porous Pavement Research." *Water Resources Bulletin*, Volume 18, No. 2, pp. 265-267.
2. Metropolitan Washington Council of Governments, 1987. *Controlling Urban Runoff: A Practical Manual for Planning and Designing Urban BMPs*.
3. Metropolitan Washington Council of Governments, 1992. *A Current Assessment of Best Management Practices: Techniques for Reducing Nonpoint Source Pollution in a Coastal Zone*.
4. Southeastern Wisconsin Regional Planning Commission, 1991. *Costs of Urban Nonpoint Source Water Pollution Control Measures*, Technical Report No. 31.
5. U.S. EPA, 1981. *Best Management Practices Implementation Manual*.

TABLE 2 ESTIMATED COSTS FOR A POROUS PAVEMENT SYSTEM

Component	Unit Cost	Total
Excavation Costs	740 cy X \$5.00/cy	\$3,700
Filter Aggregate/Stone Fill	740 cy X \$20.00/cy	\$14,800
Filter Fabric	760 sy X \$3.00/cy	\$2,280
Porous Pavement	556 sy X \$13.00/sy	\$7,228
Overflow Pipes	200 ft X \$12.00/ft	\$2,400
Observation Well	1 at \$200 each	\$200
Grass Buffer	822 sy X \$1.50/sy	\$1,250
Erosion Control	\$1000	\$1,000
Subtotal		\$32,858
Contingencies (Engineering, Administration, etc.)	25%	\$8,215
Total		\$41,073

6. U.S. EPA, 1992. *Stormwater Management for Industrial Activities: Developing Pollution Prevention Plans and Best Management Practices*. EPA 833-R-92-006.
7. Washington State Department of Ecology, 1992. *Stormwater Management Manual for the Puget Sound Basin*.

ADDITIONAL INFORMATION

Andropogon Associates, Ltd.
Yaki Miodovnik
374 Shurs Lane
Philadelphia, PA 19128

Cahill Associates
Thomas H. Cahill
104 S. High Street
West Chester, PA 19382

Center for Watershed Protection
Tom Schueler
8391 Main Street
Ellicott City, MD 21043

Fairland Park, Maryland
Ken Pensyl
Nonpoint Source Program
Water Management Administration
Maryland Department of the Environment
2500 Broening Highway
Baltimore, MD 21224

Fort Necessity National Battlefield
National Park Service
1 Washington Parkway
Farmington, PA 15437

Massachusetts Highway Department
Clem Fung
Research and Materials Group
400 D Street
Boston, MA 02210

Morris Arboretum
Robert Anderson

9414 Meadowbrook Avenue
Philadelphia, PA 19118

Washington Department of Ecology
Linda Matlock
Stormwater Unit
P.O. Box 47696
Olympia, WA 98504-7696

The mention of trade names or commercial products
does not constitute endorsement or recommendation
for the use by the U.S. Environmental Protection
Agency.

For more information contact:

Municipal Technology Branch
U.S. EPA
Mail Code 4204
401 M St., S.W.
Washington, DC, 20460

